Structure and Function of Multimeric G-Quadruplexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
31450559
PubMed Central
PMC6749722
DOI
10.3390/molecules24173074
PII: molecules24173074
Knihovny.cz E-zdroje
- Klíčová slova
- DNA:RNA hybrid, G-quadruplex, R-loop, dimer, multimer, oligomer, promoter, telomere, tetramer,
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny * MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- RNA chemie MeSH
- telomery MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
Zobrazit více v PubMed
Rich A. DNA comes in many forms. Gene. 1993;135:99–109. doi: 10.1016/0378-1119(93)90054-7. PubMed DOI
Hu Y., Cecconello A., Idili A., Ricci F., Willner I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem. Int. Ed. Engl. 2017;56:15210–15233. doi: 10.1002/anie.201701868. PubMed DOI
Davis J.T. G-quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004;43:668–698. doi: 10.1002/anie.200300589. PubMed DOI
Day H.A., Pavlou P., Waller Z.A. I-Motif DNA: Structure, stability and targeting with ligands. Bioorg. Med. Chem. 2014;22:4407–4418. doi: 10.1016/j.bmc.2014.05.047. PubMed DOI
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Phan A.T. Human telomeric G-quadruplex: Structures of DNA and RNA sequences. FEBS J. 2010;277:1107–1117. doi: 10.1111/j.1742-4658.2009.07464.x. PubMed DOI
Yatsunyk L.A., Mendoza O., Mergny J.L. “Nano-oddities”: Unusual nucleic acid assemblies for DNA-based nanostruc-tures and nanodevices. Acc. Chem. Res. 2014;47:1836–1844. doi: 10.1021/ar500063x. PubMed DOI
Mergny J.L., Sen D. DNA quadruple helices in nano-technology. Chem. Rev. 2019;119:6290–6325. PubMed
Huppert J.L., Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Todd A.K., Johnston M., Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005;33:2901–2907. doi: 10.1093/nar/gki553. PubMed DOI PMC
Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 2013;4:1796. doi: 10.1038/ncomms2792. PubMed DOI PMC
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC
Huppert J.L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. PubMed DOI PMC
Kendrick S., Hurley L.H. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl. Chem. 2010;82:1609–1621. doi: 10.1351/PAC-CON-09-09-29. PubMed DOI PMC
Rhodes D., Lipps H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. PubMed DOI
Fujioka A., Terai K., Itoh R.E., Aoki K., Nakamura T., Kuroda S., Nishida E., Matsuda M. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 2006;281:8917–8926. doi: 10.1074/jbc.M509344200. PubMed DOI
Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E.A. Multimerization rules for G-quadruplexes. Nucleic Acids Res. 2017;45:8684–8696. doi: 10.1093/nar/gkx637. PubMed DOI PMC
Traut T.W. Dissociation of enzyme oligomers: A mechanism for allosteric regulation. Crit. Rev. Biochem. Mol. Biol. 1994;29:125–163. doi: 10.3109/10409239409086799. PubMed DOI
Goodsell D.S., Olson A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 2000;29:105–153. doi: 10.1146/annurev.biophys.29.1.105. PubMed DOI
Amoutzias G.D., Robertson D.L., Van de Peer Y., Oliver S.G. Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem. Sci. 2008;33:220–229. doi: 10.1016/j.tibs.2008.02.002. PubMed DOI
Matthews J.M., Sunde M. Dimers, oligomers, everywhere. Adv. Exp. Med. Biol. 2012;747:1–18. PubMed
Watson J.D., Crick F.H.C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Yakovchuk P., Protozanova E., Frank-Kamenetskii M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006;34:564–574. doi: 10.1093/nar/gkj454. PubMed DOI PMC
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
Smirnov I., Shafer R.H. Effect of loop sequence and size on DNA aptamer stability. Biochemistry. 2000;39:1462–1468. doi: 10.1021/bi9919044. PubMed DOI
Bourdoncle A., Estevez Torres A., Gosse C., Lacroix L., Vekhoff P., Le Saux T., Jullien L., Mergny J.L. Quadruplex-based molecular beacons as tunable DNA probes. J. Am. Chem. Soc. 2006;128:11094–11105. doi: 10.1021/ja0608040. PubMed DOI
Guedin A., Gros J., Alberti P., Mergny J.L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC
Mukundan V.T., Phan A.T. Bulges in G-quadruplexes: Broadening the definition of G-quadruplex-forming sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. PubMed DOI
Cheong C., Moore P.B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry. 1992;31:8406–8414. doi: 10.1021/bi00151a003. PubMed DOI
Patel P.K., Hosur R.V. NMR observation of T-tetrads in a parallel stranded DNA quadruplex formed by Saccharomyces cerevisiae telomere repeats. Nucleic Acids Res. 1999;27:2457–2464. doi: 10.1093/nar/27.12.2457. PubMed DOI PMC
Patel P.K., Bhavesh N.S., Hosur R.V. NMR observation of a novel C-tetrad in the structure of the SV40 repeat sequence GGGCGG. Biochem. Biophys. Res. Commun. 2000;270:967–971. doi: 10.1006/bbrc.2000.2479. PubMed DOI
Zhang N., Gorin A., Majumdar A., Kettani A., Chernichenko N., Skripkin E., Patel D.J. Dimeric DNA quadruplex containing major groove-aligned A-T-A-T and G-C-G-C tetrads stabilized by inter-subunit Watson-Crick A-T and G-C pairs. J. Mol. Biol. 2001;312:1073–1088. doi: 10.1006/jmbi.2001.5002. PubMed DOI
Pan B., Xiong Y., Shi K., Deng J., Sundaralingam M. Crystal structure of an RNA purine-rich tetraplex containing adenine tetrads: Implications for specific binding in RNA tetraplexes. Structure. 2003;11:815–823. doi: 10.1016/S0969-2126(03)00107-2. PubMed DOI
Kimura T., Xu Y., Komiyama M. Human telomeric RNA r(UAGGGU) sequence forms parallel tetraplex structure with U-quartet. Nucleic Acids Symp. Ser. (Oxf.) 2009;53:239–240. doi: 10.1093/nass/nrp120. PubMed DOI
Virgilio A., Esposito V., Citarella G., Mayol L., Galeone A. Structural investigations on the anti-HIV G-quadruplex-forming oligonucleotide TGGGAG and its analogues: Evidence for the presence of an A-tetrad. ChemBioChem. 2012;13:2219–2224. doi: 10.1002/cbic.201200481. PubMed DOI
Huang H., Suslov N.B., Li N.S., Shelke S.A., Evans M.E., Koldobskaya Y., Rice P.A., Piccirilli J.A. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 2014;10:686–691. doi: 10.1038/nchembio.1561. PubMed DOI PMC
Nasiri A.H., Wurm J.P., Immer C., Weickhmann A.K., Wöhnert J. An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA. 2016;22:1750–1759. doi: 10.1261/rna.058909.116. PubMed DOI PMC
Trachman R.J., III, Demeshkina N.A., Lau M.W.L., Panchapakesan S.S.S., Jeng S.C.Y., Unrau P.J., Ferré-D′Amaré A.R. Structural basis for high-affinity fluorophore binding and activation by RNA mango. Nat. Chem. Biol. 2017;13:807–813. doi: 10.1038/nchembio.2392. PubMed DOI PMC
Chaires J.B., Trent J.O., Gray R.D., Dean W.L., Buscaglia R., Thomas S.D., Miller D.M. An Improved model for the hTERT promoter quadruplex. PLoS ONE. 2014;9:e115580. doi: 10.1371/journal.pone.0115580. PubMed DOI PMC
Do N.Q., Lim K.W., Teo M.H., Heddi B., Phan A.T. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res. 2011;39:9448–9457. doi: 10.1093/nar/gkr539. PubMed DOI PMC
Kato Y., Ohyama T., Mita H., Yamamoto Y. Dynamics and thermodynamics of dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n = 3−5) J. Am. Chem. Soc. 2005;127:9980–9981. doi: 10.1021/ja050191b. PubMed DOI
Lech C.J., Heddi B., Phan A.T. Guanine base stacking in G-quadruplex nucleic acids. Nucleic Acids Res. 2013;41:2034–2046. doi: 10.1093/nar/gks1110. PubMed DOI PMC
Smargiasso N., Rosu F., Hsia W., Colson P., Baker E.S., Bowers M.T., De Pauw E., Gabelica V. G-Quadruplex DNA assemblies: Loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 2008;130:10208–10216. doi: 10.1021/ja801535e. PubMed DOI
Haider S.M., Parkinson G.N., Neidle S. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys. J. 2008;95:296–311. doi: 10.1529/biophysj.107.120501. PubMed DOI PMC
Petraccone L., Trent J.O., Chaires J.B. The tail of the telomere. J. Am. Chem. Soc. 2008;130:16530–16532. doi: 10.1021/ja8075567. PubMed DOI PMC
Monchaud D., Teulade-Fichou M.P. A hitchhiker′s guide to G-quadruplex ligands. Org. Biomol. Chem. 2008;6:627–636. doi: 10.1039/B714772B. PubMed DOI
Bai L.P., Hagihara M., Jiang Z.H., Nakatani K. Ligand binding to tandem G quadruplexes from human telomeric DNA. ChemBioChem. 2008;9:2583–2587. doi: 10.1002/cbic.200800256. PubMed DOI
Haider S.M., Neidle S., Parkinson G.N. A structural analysis of G-quadruplex/ligand interactions. Biochimie. 2011;93:1239–1251. doi: 10.1016/j.biochi.2011.05.012. PubMed DOI
Zhang S., Wu Y., Zhang W. G-quadruplex structures and their interaction diversity with ligands. ChemMedChem. 2014;9:899–911. doi: 10.1002/cmdc.201300566. PubMed DOI
Hu M.H., Chen S.B., Wang B., Ou T.M., Gu L.Q., Tan J.H., Huang Z.S. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Res. 2017;45:1606–1618. doi: 10.1093/nar/gkw1195. PubMed DOI PMC
Funke A., Karg B., Dickerhoff J., Balke D., Müller S., Weisz K. Ligand- induced dimerization of a truncated parallel MYC G-Quadruplex. ChemBioChem. 2018;19:505–512. doi: 10.1002/cbic.201700593. PubMed DOI
Krishnan-Ghosh Y., Liu D., Balasubramanian S. Formation of an interlocked quadruplex dimer by d(GGGT) J. Am. Chem. Soc. 2004;126:11009–11016. doi: 10.1021/ja049259y. PubMed DOI
Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334:65–70. doi: 10.1038/334364a0. PubMed DOI
Sundquist W.I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989;342:825–829. doi: 10.1038/342825a0. PubMed DOI
Williamson J.R., Raghuraman M.K., Cech T.R. Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell. 1989;59:871–880. doi: 10.1016/0092-8674(89)90610-7. PubMed DOI
Sen D., Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry. 1992;31:65–70. doi: 10.1021/bi00116a011. PubMed DOI
Laughlan G., Murchie A.I., Norman D.G., Moore M.H., Moody P.C., Lilley D.M., Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994;265:520–524. doi: 10.1126/science.8036494. PubMed DOI
Phillips K., Dauter Z., Murchie A.I., Lilley D.M., Luisi B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution. J. Mol. Biol. 1997;273:171–182. doi: 10.1006/jmbi.1997.1292. PubMed DOI
Borbone N., Amato J., Oliviero G., D′Atri V., Gabelica V., De Pauw E., Piccialli G., Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res. 2011;39:7848–7857. doi: 10.1093/nar/gkr489. PubMed DOI PMC
D′Atri V., Borbone N., Amato J., Gabelica V., D′Errico S., Piccialli G., Mayol L., Oliviero G. DNA-based nanostructures: The effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes. Biochimie. 2014;99:119–128. doi: 10.1016/j.biochi.2013.11.020. PubMed DOI
Kuryavyi V., Cahoon L.A., Seifert H.S., Patel D.J. RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5′ end-stacked dimeric parallel G-quadruplexes. Structure. 2012;20:2090–2102. doi: 10.1016/j.str.2012.09.013. PubMed DOI PMC
Adrian M., Ang D.J., Lech C.J., Heddi B., Nicolas A., Phan A.T. Structure and conformational dynamics of a stacked dimeric G-quadruplex formed by the human CEB1 minisatellite. J. Am. Chem. Soc. 2014;136:6297–6305. doi: 10.1021/ja4125274. PubMed DOI
Matsugami A., Ouhashi K., Kanagawa M., Liu H., Kanagawa S., Uesugi S., Katahira M. An intramolecular quadruplex of (GGA) (4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction. J. Mol. Biol. 2001;313:255–269. doi: 10.1006/jmbi.2001.5047. PubMed DOI
Kuryavyi V., Phan A.T., Patel D.J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010;38:6757–6773. doi: 10.1093/nar/gkq558. PubMed DOI PMC
Trajkovski M., da Silva M.W., Plavec J. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 2012;134:4132–4141. doi: 10.1021/ja208483v. PubMed DOI
Wei D., Todd A.K., Zloh M., Gunaratnam M., Parkinson G.N., Neidle S. Crystal structure of a promoter sequence in the B-raf gene reveals an intertwined dimer quadruplex. J. Am. Chem. Soc. 2013;135:19319–19329. doi: 10.1021/ja4101358. PubMed DOI
Chen Y., Yang D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs. Curr. Protoc. Nucleic Acid Chem. 2012;50:1–17. PubMed PMC
Yaku H., Murashima T., Tateishi-Karimata H., Nakano S., Miyoshi D., Sugimoto N. Study on effects of molecular crowding on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition. Methods. 2013;64:19–27. doi: 10.1016/j.ymeth.2013.03.028. PubMed DOI
Bhattacharyya D., Mirihana Arachchilage G., Basu S. Metal cations in G- quadruplex folding and stability. Front. Chem. 2016;4:38. doi: 10.3389/fchem.2016.00038. PubMed DOI PMC
Kar A., Jones N., Arat N.Ö., Fishel R., Griffith J.D. Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation. J. Biol. Chem. 2018;293:9473–9485. doi: 10.1074/jbc.RA118.002158. PubMed DOI PMC
Podbevsek P., Plavec J. KRAS promoter oligonucleotide with decoy activity dimerizes into a unique topology consisting of two G-quadruplex units. Nucleic Acids Res. 2016;44:917–925. doi: 10.1093/nar/gkv1359. PubMed DOI PMC
Marsh T.C., Henderson E. G-wires: Self-assembly of a telomeric oligonucleotide, d(GGGGTTGGGG), into large superstructures. Biochemistry. 1994;33:10718–10724. doi: 10.1021/bi00201a020. PubMed DOI
Bose K., Lech C.J., Heddi B., Phan A.T. High-resolution AFM structure of DNA G-wires in aqueous solution. Nat. Commun. 2018;9:1959. doi: 10.1038/s41467-018-04016-y. PubMed DOI PMC
Hessari N.M., Spindler L., Troha T., Lam W.C., Drevensek-Olenik I., da Silva M.W. Programmed self-assembly of a quadruplex DNA nanowire. Chemistry. 2014;20:3626–3630. doi: 10.1002/chem.201300692. PubMed DOI
Guo X., Liu S., Yu Z. Bimolecular quadruplexes and their transitions to higher-order molecular structures detected by ESI-FTICR-MS. J. Am. Soc. Mass Spectrom. 2007;18:1467–1476. doi: 10.1016/j.jasms.2007.05.003. PubMed DOI
Majerová T., Streckerová T., Bednárová L., Curtis E.A. Sequence requirements of intrinsically fluorescent G-quadruplexes. Biochemistry. 2018;57:4052–4062. doi: 10.1021/acs.biochem.8b00252. PubMed DOI
Kolesnikova S., Srb P., Vrzal L., Lawrence M., Veverka V., Curtis E.A. GTP-dependent formation of multimeric G-quadruplexes. ACS Chem. Biol. doi: 10.1021/acschembio.9b00428. in press. PubMed DOI
Švehlová K., Lawrence M.S., Bednárová L., Curtis E.A. Altered biochemical specificity of G-quadruplexes with mutated tetrads. Nucleic Acids Res. 2016;44:10789–10803. doi: 10.1093/nar/gkw987. PubMed DOI PMC
Lu M., Guo Q., Kallenbach N.R. Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry. 1992;31:2455–2459. doi: 10.1021/bi00124a003. PubMed DOI
Creze C., Rinaldi B., Haser R., Bouvet P., Gouet P. Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. Acta Crystallogr. D Biol. Crystallogr. 2007;63:682–688. doi: 10.1107/S0907444907013315. PubMed DOI
Deng J., Xiong Y., Sundaralingam M. X-ray analysis of an RNA tetraplex (UGGGGU)(4) with divalent Sr(2+) ions at subatomic resolution (0.61 A) Proc. Nat. Acad. Sci. USA. 2001;98:13665–13670. doi: 10.1073/pnas.241374798. PubMed DOI PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. doi: 10.1021/ja045154j. PubMed DOI
Risitano A., Fox K.R. Stability of intramolecular DNA quadruplexes: Comparison with DNA duplexes. Biochemistry. 2003;42:6507–6513. doi: 10.1021/bi026997v. PubMed DOI
Blackburn E.H., Gall J.G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 1978;120:33–53. doi: 10.1016/0022-2836(78)90294-2. PubMed DOI
Jacob N.K., Skopp R., Price C.M. G-overhang dynamics at Tetrahymena telomeres. EMBO J. 2001;20:4299–4308. doi: 10.1093/emboj/20.15.4299. PubMed DOI PMC
Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Nat. Acad. Sci. USA. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. PubMed DOI PMC
Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997;11:2801–2809. doi: 10.1101/gad.11.21.2801. PubMed DOI PMC
Henderson E., Hardin C.C., Walk S.K., Tinoco I., Jr., Blackburn E.H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine- guanine base pairs. Cell. 1987;51:899–908. doi: 10.1016/0092-8674(87)90577-0. PubMed DOI
Neidle S., Parkinson G.N. The structure of telomeric DNA. Curr. Opin. Struct. Biol. 2003;13:275–283. doi: 10.1016/S0959-440X(03)00072-1. PubMed DOI
Li J., Correia J.J., Wang L., Trent J.O., Chaires J.B. Not so crystal clear: The structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res. 2005;33:4649–4659. doi: 10.1093/nar/gki782. PubMed DOI PMC
Petraccone L. Higher-order quadruplex structures. Top. Curr. Chem. 2013;330:23–46. PubMed
Yu H.Q., Miyoshi D., Sugimoto N. Characterization of structure and stability of long telomeric DNA G-quadruplexes. J. Am. Chem. Soc. 2006;128:15461–15468. doi: 10.1021/ja064536h. PubMed DOI
Kankia B. Tetrahelical monomolecular architecture of DNA: A new building block for nanotechnology. J. Phys. Chem. B. 2014;118:6134–6140. doi: 10.1021/jp503276q. PubMed DOI
Kankia B. Monomolecular tetrahelix of polyguanine with a strictly defined folding pattern. Sci. Rep. 2018;8:10115. doi: 10.1038/s41598-018-28572-x. PubMed DOI PMC
Xu Y., Komiyama M. The structural studies of human telomeric DNA using AFM. Nucleic Acids Symp. Ser. (Oxf). 2007;51:241–242. doi: 10.1093/nass/nrm121. PubMed DOI
Xu X., Ishizuka T., Kurabayashi K., Komiyama M. Consecutive formation of G-quadruplexes in human telomeric-overhang DNA: A protective capping structure for telomere ends. Angew. Chem. Int. Ed. 2009;48:7833–7836. doi: 10.1002/anie.200903858. PubMed DOI
Petraccone L., Spink C., Trent J.O., Garbett N.C., Mekmaysy C.S., Giancola C., Chaires J.B. Structure and stability of higher-order human telomeric quadruplexes. J. Am. Chem. Soc. 2011;133:20951–20961. doi: 10.1021/ja209192a. PubMed DOI PMC
Schaffitzel C., Berger I., Postberg J., Hanes J., Lipps H.J., Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Nat. Acad. Sci. USA. 2001;98:8572–8577. doi: 10.1073/pnas.141229498. PubMed DOI PMC
Moye A.L., Porter K.C., Cohen S.B., Phan T., Zyner K.G., Sasaki N., Lovrecz G.O., Beck J.L., Bryan T.M. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 2015;6:7643. doi: 10.1038/ncomms8643. PubMed DOI PMC
Zhao C., Wu L., Ren J., Xu Y., Qu X. Targeting human telomeric higher-order DNA: Dimeric G-quadruplex units serve as preferred binding site. J. Am. Chem. Soc. 2013;135:18786–18789. doi: 10.1021/ja410723r. PubMed DOI
Huang X.X., Zhu L.N., Wu B., Huo Y.F., Duan N.N., Kong D.M. Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes. Nucleic Acids Res. 2014;42:8719–8731. doi: 10.1093/nar/gku526. PubMed DOI PMC
Zhang Q., Liu Y.C., Kong D.M., Guo D.S. Tetraphenylethene derivatives with different numbers of positively charged side arms have different multimeric G- quadruplex recognition specificity. Chemistry. 2015;21:13253–13260. doi: 10.1002/chem.201501847. PubMed DOI
Dai J., Dexheimer T.S., Chen D., Carver M., Ambrus A., Jones R.A., Yang D. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J. Am. Chem. Soc. 2006;128:1096–1098. doi: 10.1021/ja055636a. PubMed DOI PMC
González V., Hurley L.H. The c-MYC NHE III1: Function and regulation. Annu. Rev. Pharmacol. Toxicol. 2008;50:111–129. doi: 10.1146/annurev.pharmtox.48.113006.094649. PubMed DOI
Mathad R.I., Hatzakis E., Dai J., Yang D. c-MYC promoter G-quadruplex formed at the 5′-end of NHE III1 element: Insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res. 2011;39:9023–9033. doi: 10.1093/nar/gkr612. PubMed DOI PMC
Kerkour A., Marquevielle J., Ivashchenko S., Yatsunyk L.A., Mergny J.L., Salgado G.F. High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J. Biol. Chem. 2017;292:8082–8091. doi: 10.1074/jbc.M117.781906. PubMed DOI PMC
Matsugami A., Okuizumi T., Uesugi S., Katahira M. Intramolecular higher order packing of parallel quadruplexes comprising a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad of GGA triplet repeat DNA. J. Biol. Chem. 2003;278:28147–28153. doi: 10.1074/jbc.M303694200. PubMed DOI
Palumbo S.L., Memmott R.M., Uribe D.J., Krotova-Khan Y., Hurley J.H., Ebbinghaus S.W. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res. 2008;36:1755–1769. doi: 10.1093/nar/gkm1069. PubMed DOI PMC
Broxson C., Beckett J., Tornaletti S. Transcription arrest by a G-quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry. 2011;50:4162–4172. doi: 10.1021/bi2002136. PubMed DOI
Hirsch M.R., Gaugler L., Deagostini-Bazin H., Bally-Cuif L., Goridis C. Identification of positive and negative regulatory elements governing cell-type-specific expression of the neural cell adhesion molecule gene. Mol. Cell. Biol. 1990;10:1959–1968. doi: 10.1128/MCB.10.5.1959. PubMed DOI PMC
Chamboredon S., Briggs J., Vial E., Hurault J., Galvagni F., Oliviero S., Bos T., Castellazzi M. v-Jun downregulates the SPARC target gene by binding to the proximal promoter indirectly through Sp1/3. Oncogene. 2003;22:4047–4061. doi: 10.1038/sj.onc.1206713. PubMed DOI
Morgan R.K., Batra H., Gaerig V.C., Hockings J., Brooks T.A. Identification and characterization of a new G-quadruplex forming region within the kRAS promoter as a transcriptional regulator. Biochim. Biophys. Acta. 2016;1859:235–245. doi: 10.1016/j.bbagrm.2015.11.004. PubMed DOI
Islam I., Baba Y., Witarto A.B., Yoshida W. G-quadruplex-forming GGA repeat region functions as a negative regulator of the Ccnb1ip1 enhancer. Biosci. Biotechnol. Biochem. 2019;7:1–6. doi: 10.1080/09168451.2019.1611412. PubMed DOI
Palumbo S.L., Ebbinghaus S.W., Hurley L.H. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J. Am. Chem. Soc. 2009;131:10878–10891. doi: 10.1021/ja902281d. PubMed DOI PMC
Kang H.J., Cui Y., Yin H., Scheid A., Hendricks W.P.D., Schmidt J., Sekulic A., Kong D., Trent J.M., Gokhale V., et al. A pharmacological chaperone molecule induces cancer cell death by restoring tertiary DNA structures in mutant hTERT promoters. J. Am. Chem. Soc. 2016;138:13673–13692. doi: 10.1021/jacs.6b07598. PubMed DOI
Micheli E., Martufi M., Cacchione S., De Santis P., Savino M. Self-organization of G-quadruplex structures in the hTERT core promoter stabilized by polyaminic side chain perylene derivatives. Biophys. Chem. 2010;153:43–53. doi: 10.1016/j.bpc.2010.10.003. PubMed DOI
Saha D., Singh A., Hussain T., Srivastava V., Sengupta S., Kar A., Dhapola P., Dhople V., Ummanni R., Chowdhury S. Epigenetic suppression of human telomerase (hTERT) is mediated by the metastasis suppressor NME2 in a G-quadruplex-dependent fashion. J. Biol. Chem. 2017;292:15205–15215. doi: 10.1074/jbc.M117.792077. PubMed DOI PMC
Yafe A., Etzioni S., Weisman-Shomer P., Fry M. Formation and properties of hairpin and tetraplex structures of guanine-rich regulatory sequences of muscle-specific genes. Nucleic Acids Res. 2005;33:2887–2900. doi: 10.1093/nar/gki606. PubMed DOI PMC
Rigo R., Sissi C. Characterization of G4-G4 crosstalk in the c-KIT promoter region. Biochemistry. 2017;56:4309–4312. doi: 10.1021/acs.biochem.7b00660. PubMed DOI
Ducani C., Bernardinelli G., Högberg B., Keppler B.K., Terenzi A. Interplay of three G-quadruplex units in the KIT promoter. J. Am. Chem. Soc. 2019;141:10205–10213. doi: 10.1021/jacs.8b12753. PubMed DOI
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-quadruplex forming sequences in the genome of all known viruses: A comprehensive guide. PLoS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC
Frasson I., Nadai M., Richter S.N. Conserved G-quadruplexes regulate the immediate early promoters of human Alphaherpesviruses. Molecules. 2019;24:2375. doi: 10.3390/molecules24132375. PubMed DOI PMC
Xu Y., Kimura T., Komiyama M. Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symp. Ser. (Oxf.) 2008;52:169–170. doi: 10.1093/nass/nrn086. PubMed DOI
Wanrooij P.H., Uhler J.P., Shi Y., Westerlund F., Falkenberg M., Gustafsson C.M. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 2012;40:10334–10344. doi: 10.1093/nar/gks802. PubMed DOI PMC
Zheng K.W., Wu R.Y., He Y.D., Xiao S., Zhang J.Y., Liu J.Q., Hao Y.H., Tan Z. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Res. 2014;42:10832–10844. doi: 10.1093/nar/gku764. PubMed DOI PMC
Zheng K.W., Xiao S., Liu J.Q., Zhang J.Y., Hao Y.H., Tan Z. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res. 2013;41:5533–5541. doi: 10.1093/nar/gkt264. PubMed DOI PMC
Xiao S., Zhang J.Y., Wu J., Wu R.Y., Xia Y., Zheng K.W., Hao Y.H., Zhou X., Tan Z. Formation of DNA:RNA hybrid G-quadruplexes of two G-quartet layers in transcription: Expansion of the prevalence and diversity of G-quadruplexes in genomes. Angew. Chem. Int. Ed. Engl. 2014;53:13110–13114. doi: 10.1002/anie.201407045. PubMed DOI
Xiao S., Zhang J.Y., Zheng K.W., Hao Y.H., Tan Z. Bioinformatic analysis reveals an evolutional selection for DNA:RNA hybrid G-quadruplex structures as putative transcription regulatory elements in warm-blooded animals. Nucleic Acids Res. 2013;41:10379–10390. doi: 10.1093/nar/gkt781. PubMed DOI PMC
Zhang J.Y., Zheng K.W., Xiao S., Hao Y.H., Tan Z. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA. J. Am. Chem. Soc. 2014;136:1381–1390. doi: 10.1021/ja4085572. PubMed DOI
Zhao Y., Zhang J.Y., Zhang Z.Y., Tong T.J., Hao Y.H., Tan Z. Real-time detection reveals responsive cotranscriptional formation of persistent intramolecular DNA and intermolecular DNA:RNA hybrid G-quadruplexes stabilized by R-loop. Anal. Chem. 2017;89:6036–6042. doi: 10.1021/acs.analchem.7b00625. PubMed DOI
Shrestha P., Xiao S., Dhakal S., Tan Z., Mao H. Nascent RNA transcripts facilitate the formation of G-quadruplexes. Nucleic Acids Res. 2014;42:7236–7246. doi: 10.1093/nar/gku416. PubMed DOI PMC
Curtis E.A., Liu D.R. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013;20:521–532. doi: 10.1016/j.chembiol.2013.02.015. PubMed DOI PMC
G-quadruplexes in helminth parasites
Overlapping but distinct: a new model for G-quadruplex biochemical specificity
Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions