The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae

. 2023 Dec 20 ; 43 (12) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38112096

Grantová podpora
22-21903S Czech Science Foundation
Italian Ministry of Health

Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.

Zobrazit více v PubMed

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 10.1038/nature11247 PubMed DOI PMC

Teng F.-Y., Jiang Z.-Z., Guo M., Tan X.-Z., Chen F., Xi X.-G.et al. . (2021) G-Quadruplex DNA: a novel target for drug design. Cell. Mol. Life Sci. 78, 6557–6583 10.1007/s00018-021-03921-8 PubMed DOI PMC

Zhang X., Spiegel J., Martínez Cuesta S., Adhikari S. and Balasubramanian S. (2021) Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat. Chem. 13, 626–633 10.1038/s41557-021-00736-9 PubMed DOI PMC

Kolesnikova S. and Curtis E.A. (2019) Structure and function of multimeric G-quadruplexes. Molecules 24, 3074 10.3390/molecules24173074 PubMed DOI PMC

Mendoza O., Bourdoncle A., Boulé J.-B., Brosh R.M. and Mergny J.-L. (2016) G-quadruplexes and helicases. Nucleic Acids Res. 44, 1989–2006 10.1093/nar/gkw079 PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C.C. and Fojta M. (2014) DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 15, 17493–17517 10.3390/ijms151017493 PubMed DOI PMC

Li G., Su G., Wang Y., Wang W., Shi J., Li D.et al. . (2023) Integrative genomic analyses of promoter G-quadruplexes reveal their selective constraint and association with gene activation. Commun Biol 6, 625 10.1038/s42003-023-05015-6 PubMed DOI PMC

Shu H., Zhang R., Xiao K., Yang J. and Sun X. (2022) G-quadruplex-binding proteins: promising targets for drug design. Biomolecules 12, 648 10.3390/biom12050648 PubMed DOI PMC

Varshney D., Spiegel J., Zyner K., Tannahill D. and Balasubramanian S. (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 10.1038/s41580-020-0236-x PubMed DOI PMC

Simonsson T., Pecinka P. and Kubista M. (1998) DNA tetraplex formation in the control region of C-Myc. Nucleic Acids Res. 26, 1167–1172 10.1093/nar/26.5.1167 PubMed DOI PMC

Siddiqui-Jain A., Grand C.L., Bearss D.J. and Hurley L.H. (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. 99, 11593–11598 10.1073/pnas.182256799 PubMed DOI PMC

Cogoi S. and Xodo L.E. (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 34, 2536–2549 10.1093/nar/gkl286 PubMed DOI PMC

Bejugam M., Sewitz S., Shirude P.S., Rodriguez R., Shahid R. and Balasubramanian S. (2007) Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. J. Am. Chem. Soc. 129, 12926–12927 10.1021/ja075881p PubMed DOI PMC

Chen L., Dickerhoff J., Sakai S. and Yang D. (2022) DNA G-quadruplex in human telomeres and oncogene promoters: structures, functions, and small molecule targeting. Acc. Chem. Res. 55, 2628–2646 10.1021/acs.accounts.2c00337 PubMed DOI PMC

Bahls B., Aljnadi I.M., Emídio R., Mendes E. and Paulo A. (2023) G-quadruplexes in c-MYC promoter as targets for cancer therapy. Biomedicines 11, 969 10.3390/biomedicines11030969 PubMed DOI PMC

Zawacka-Pankau J.E. (2022) The role of P53 family in cancer. Cancers (Basel) 14, 823 10.3390/cancers14030823 PubMed DOI PMC

Kastenhuber E.R. and Lowe S.W. (2017) Putting P53 in context. Cell 170, 1062–1078 10.1016/j.cell.2017.08.028 PubMed DOI PMC

Boutelle A.M. and Attardi L.D. (2021) P53 and tumor suppression: it takes a network. Trends Cell Biol. 31, 298–310 10.1016/j.tcb.2020.12.011 PubMed DOI PMC

Marcel V., Dichtel-Danjoy M.-L., Sagne C., Hafsi H., Ma D., Ortiz-Cuaran S.et al. . (2011) Biological functions of P53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ. 18, 1815–1824 10.1038/cdd.2011.120 PubMed DOI PMC

Zhao L. and Sanyal S. (2022) P53 isoforms as cancer biomarkers and therapeutic targets. Cancers (Basel) 14, 3145 10.3390/cancers14133145 PubMed DOI PMC

Bourdon J.-C. p53 Family Isoforms. Curr. Pharm. Biotechnol.. http://www.eurekaselect.com/66037/article accessed 2020-04-05) 10.2174/138920107783018444 PubMed DOI PMC

Osterburg C. and Dötsch V. (2022) Structural diversity of P63 and P73 isoforms. Cell Death Differ. 29, 921–937 10.1038/s41418-022-00975-4 PubMed DOI PMC

el-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W. and Vogelstein B. (1992) Definition of a consensus binding site for P53. Nat. Genet. 1, 45–49 10.1038/ng0492-45 PubMed DOI

Senitzki A., Safieh J., Sharma V., Golovenko D., Danin-Poleg Y., Inga A.et al. . (2021) The complex architecture of P53 binding sites. Nucleic Acids Res. 49, 1364–1382 10.1093/nar/gkaa1283 PubMed DOI PMC

Porubiaková O., Bohálová N., Inga A., Vadovičová N., Coufal J., Fojta M.et al. . (2019) The influence of quadruplex structure in proximity to P53 target sequences on the transactivation potential of P53 alpha isoforms. Int. J. Mol. Sci. 21, 1127 10.3390/ijms21010127 PubMed DOI PMC

Monti P., Brazda V., Bohálová N., Porubiaková O., Menichini P., Speciale A.et al. . (2021) Evaluating the influence of a G-quadruplex prone sequence on the transactivation potential by wild-type and/or mutant P53 family proteins through a yeast-based functional assay. Genes (Basel) 12, 277 10.3390/genes12020277 PubMed DOI PMC

Brazda V., Kolomaznik J., Mergny J.-L. and Stastny J. (2020) G4Killer web application: a tool to design G-quadruplex mutations. J. Bioinform. 36103246–3247 10.1093/bioinformatics/btaa057 PubMed DOI PMC

Bedrat A., Lacroix L. and Mergny J.-L. (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746–1759 10.1093/nar/gkw006 PubMed DOI PMC

Renaud de la Faverie A., Guédin A., Bedrat A., Yatsunyk L.A. and Mergny J.-L. (2014) Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 42, e65 10.1093/nar/gku111 PubMed DOI PMC

Harrel W.A. Jr. (2006) Quadruplex Nucleic Acids(Neidle S. and Balasubramanian S., eds), Royal Society of Chemistry, 10.1039/9781847555298 DOI

Biffi G., Tannahill D., McCafferty J. and Balasubramanian S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 10.1038/nchem.1548 PubMed DOI PMC

Storici F. and Resnick M.A. (2003) Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet. Eng. (N. Y.) 25, 189–207 PubMed

Inga A., Storici F., Darden T.A. and Resnick M.A. (2002) Differential transactivation by the P53 transcription factor is highly dependent on P53 level and promoter target sequence. Mol. Cell. Biol. 22, 8612–8625 10.1128/MCB.22.24.8612-8625.2002 PubMed DOI PMC

Monti P., Ciribilli Y., Bisio A., Foggetti G., Raimondi I., Campomenosi P.et al. . (2014) ∆N-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 5, 2116–2130 10.18632/oncotarget.1845 PubMed DOI PMC

Monti P., Bosco B., Gomes S., Saraiva L., Fronza G. and Inga A. (2019) Yeast as a chassis for developing functional assays to study human P53. JoVE (J. Visualized Experiments) 150, e59071 PubMed

Kejnovská I., Renčiuk D., Palacký J. and Vorlíčková M. (2019) CD Study of the G-Quadruplex Conformation. Methods Mol. Biol. 2035, 25–44 10.1007/978-1-4939-9666-7_2 PubMed DOI

Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M.et al. . (2018) The human transcription factors. Cell 172, 650–665 10.1016/j.cell.2018.01.029 PubMed DOI

Rube H.T., Rastogi C., Kribelbauer J.F. and Bussemaker H.J. (2018) A unified approach for quantifying and interpreting DNA shape readout by transcription factors. Mol. Syst. Biol. 14, e7902 10.15252/msb.20177902 PubMed DOI PMC

Schnepf M., von Reutern M., Ludwig C., Jung C. and Gaul U. (2020) Transcription factor binding affinities and DNA shape readout. iScience 23, 101694 10.1016/j.isci.2020.101694 PubMed DOI PMC

Zhou T., Shen N., Yang L., Abe N., Horton J., Mann R.S.et al. . (2015) Quantitative modeling of transcription factor binding specificities using DNA shape. Proc. Natl. Acad. Sci. U.S.A. 112, 4654–4659 10.1073/pnas.1422023112 PubMed DOI PMC

Brázda V., Bartas M. and Bowater R.P. (2021) Evolution of diverse strategies for promoter regulation. Trends Genet. 37, 730–744 10.1016/j.tig.2021.04.003 PubMed DOI

Spiegel J., Adhikari S. and Balasubramanian S. (2020) The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 10.1016/j.trechm.2019.07.002 PubMed DOI PMC

Čutová M., Manta J., Porubiaková O., Kaura P., Šťastný J., Jagelská E.B.et al. . (2020) Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics 112, 1897–1901 10.1016/j.ygeno.2019.11.002 PubMed DOI

Hänsel-Hertsch R., Di Antonio M. and Balasubramanian S. (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279–284 10.1038/nrm.2017.3 PubMed DOI

Bohálová N., Mergny J.-L. and Brázda V. (2021) Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie 191, 87–90 10.1016/j.biochi.2021.09.004 PubMed DOI

Hennecker C., Yamout L., Zhang C., Zhao C., Hiraki D., Moitessier N.et al. . (2022) Structural polymorphism of guanine quadruplex-containing regions in human promoters. Int. J. Mol. Sci. 23, 16020 10.3390/ijms232416020 PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J.et al. . (2019) G4Hunter Web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495 10.1093/bioinformatics/btz087 PubMed DOI PMC

Nadai M. and Richter S.N. (2019) G-quadruplex visualization in cells via antibody and fluorescence probe. Methods Mol. Biol. 2035, 383–395 10.1007/978-1-4939-9666-7_24 PubMed DOI

Lago S., Nadai M., Cernilogar F.M., Kazerani M., Domíniguez Moreno H., Schotta G.et al. . (2021) Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun. 12, 3885 10.1038/s41467-021-24198-2 PubMed DOI PMC

Spiegel J., Cuesta S.M., Adhikari S., Hänsel-Hertsch R., Tannahill D. and Balasubramanian S. (2021) G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 22, 117 10.1186/s13059-021-02324-z PubMed DOI PMC

Joerger A.C. and Fersht A.R. (2016) The P53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375–404 10.1146/annurev-biochem-060815-014710 PubMed DOI

Belyi V.A., Ak P., Markert E., Wang H., Hu W., Puzio-Kuter A.et al. . (2010) The origins and evolution of the P53 family of genes. Cold Spring Harb. Perspect. Biol. 2, a001198 10.1101/cshperspect.a001198 PubMed DOI PMC

Menendez D., Inga A. and Resnick M.A. (2009) The Expanding Universe of P53 Targets. Nat. Rev. Cancer 9, 724–737 10.1038/nrc2730 PubMed DOI

Ciribilli Y., Monti P., Bisio A., Nguyen H.T., Ethayathulla A.S., Ramos A.et al. . (2013) Transactivation specificity is conserved among P53 family proteins and depends on a response element sequence code. Nucleic Acids Res. 41, 8637–8653 10.1093/nar/gkt657 PubMed DOI PMC

Tebaldi T., Zaccara S., Alessandrini F., Bisio A., Ciribilli Y. and Inga A. (2015) Whole-genome cartography of P53 response elements ranked on transactivation potential. BMC Genomics 16, 464 10.1186/s12864-015-1643-9 PubMed DOI PMC

Duy D.L. and Kim N. (2023) Yeast transcription factor Msn2 binds to G4 DNA. Nucleic. Acids. Res. 51, 9643–9657 10.1093/nar/gkad684 PubMed DOI PMC

Singh S., Berroyer A., Kim M. and Kim N. (2020) Yeast Nucleolin Nsr1 impedes replication and elevates genome instability at an actively transcribed guanine-rich G4 DNA-forming sequence. Genetics 216, 1023–1037 10.1534/genetics.120.303736 PubMed DOI PMC

Gao J., Zybailov B.L., Byrd A.K., Griffin W.C., Chib S., Mackintosh S.G.et al. . (2015) Yeast transcription co-activator sub1 and its human homolog PC4 preferentially bind to G-quadruplex DNA. Chem. Commun. (Camb.) 51, 7242–7244 10.1039/C5CC00742A PubMed DOI PMC

Krämer J., Kang R., Grimm L.M., De Cola L., Picchetti P. and Biedermann F. (2022) Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122, 3459–3636 10.1021/acs.chemrev.1c00746 PubMed DOI PMC

Lages A., Proud C.G., Holloway J.W. and Vorechovsky I. (2019) Thioflavin T monitoring of guanine quadruplex formation in the Rs689-dependent INS Intron 1. Mol. Ther. Nucleic Acids 16, 770–777 10.1016/j.omtn.2019.04.026 PubMed DOI PMC

Stsiapura V.I., Maskevich A.A., Kuzmitsky V.A., Uversky V.N., Kuznetsova I.M. and Turoverov K.K. (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J. Phys. Chem. B 112, 15893–15902 10.1021/jp805822c PubMed DOI

Hanczyc P., Rajchel-Mieldzioć P., Feng B. and Fita P. (2021) Identification of thioflavin T binding modes to DNA: a structure-specific molecular probe for lasing applications. J. Phys. Chem. Lett. 12, 5436–5442 10.1021/acs.jpclett.1c01254 PubMed DOI PMC

Bugaut A. and Balasubramanian S. (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 40, 4727–4741 10.1093/nar/gks068 PubMed DOI PMC

Joachimi A., Benz A. and Hartig J.S. (2009) A Comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem. 17, 6811–6815 10.1016/j.bmc.2009.08.043 PubMed DOI

Monti P., Ciribilli Y., Bisio A., Foggetti G., Raimondi I., Campomenosi P.et al. . (2014) ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 5, 2116–2130 10.18632/oncotarget.1845 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace