Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-19170Y
Grantová Agentura České Republiky
20-20229S
Grantová Agentura České Republiky
19-17063S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477
European Regional Development Fund
PubMed
32854410
PubMed Central
PMC7503932
DOI
10.3390/ijms21176123
PII: ijms21176123
Knihovny.cz E-zdroje
- Klíčová slova
- DNA secondary structure, circular dichroism, multimerisation, parallel guanine quadruplex, stopped-flow,
- MeSH
- cirkulární dichroismus MeSH
- DNA chemie genetika MeSH
- G-kvadruplexy MeSH
- guanin chemie MeSH
- konformace nukleové kyseliny MeSH
- molekulární modely MeSH
- substituce aminokyselin * MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- guanin MeSH
Recently, we reported an inhibitory effect of guanine substitutions on the conformational switch from antiparallel to parallel quadruplexes (G4) induced by dehydrating agents. As a possible cause, we proposed a difference in the sensitivity of parallel and antiparallel quadruplexes to the guanine substitutions in the resulting thermodynamic stability. Reports on the influence of guanine substitutions on the biophysical properties of intramolecular parallel quadruplexes are rare. Moreover, such reports are often complicated by the multimerisation tendencies of parallel quadruplexes. To address this incomplete knowledge, we employed circular dichroism spectroscopy (CD), both as stopped-flow-assisted fast kinetics measurements and end-point measurements, accompanied by thermodynamic analyses, based on UV absorption melting profiles, and electrophoretic methods. We showed that parallel quadruplexes are significantly more sensitive towards guanine substitutions than antiparallel ones. Furthermore, guanine-substituted variants, which in principle might correspond to native genomic sequences, distinctly differ in their biophysical properties, indicating that the four guanines in each tetrad of parallel quadruplexes are not equal. In addition, we were able to distinguish by CD an intramolecular G4 from intermolecular ones resulting from multimerisation mediated by terminal tetrad association, but not from intermolecular G4s formed due to inter-strand Hoogsteen hydrogen bond formation. In conclusion, our study indicates significant variability in parallel quadruplex structures, otherwise disregarded without detailed experimental analysis.
Zobrazit více v PubMed
Neidle S., Balasubramanian S. Quadruplex Nucleic Acids. Royal Society of Chemistry; London, Cambridge, UK: 2006. pp. 1–3.
Miyoshi D., Fujimoto T., Sugimoto N. Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Quadruplex Nucleic Acids. 2012;330:87–110. doi: 10.1007/128_2012_335. PubMed DOI
Zhou J., Tateishi-Karimata H., Mergny J., Cheng M., Feng Z., Miyoshi D., Sugimoto N., Li C. Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie. 2016;121:204–208. doi: 10.1016/j.biochi.2015.12.012. PubMed DOI
Huppert J., Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., Di Antonio M., Balasubramanian S. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47:3862–3874. doi: 10.1093/nar/gkz179. PubMed DOI PMC
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC
Varizhuk A.M., Ischenko D., Tsvetkov V.B., Novikov R., Kulemin N.A., Kaluzhny D., Vlasenok M., Naumov V., Smirnov I., Pozmogova G. The expanding repertoire of G4 DNA structures. Biochimie. 2017;135:54–62. doi: 10.1016/j.biochi.2017.01.003. PubMed DOI
Lightfoot H.L., Hagen T., Tatum N.J., Hall J. The diverse structural landscape of quadruplexes. FEBS Lett. 2019;593:2083–2102. doi: 10.1002/1873-3468.13547. PubMed DOI
Konvalinová H., Dvorakova Z., Renčiuk D., Bednářová K., Kejnovska I., Trantírek L., Vorlíčková M., Sagi J. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015;118:15–25. doi: 10.1016/j.biochi.2015.07.013. PubMed DOI
Sagi J. G-quadruplexes incorporating modified constituents: A review. J. Biomol. Struct. Dyn. 2013;32:477–511. doi: 10.1080/07391102.2013.775074. PubMed DOI
Esposito V., Martino L., Citarella G., Virgilio A., Mayol L., Giancola C., Galeone A. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res. 2009;38:2069–2080. doi: 10.1093/nar/gkp1087. PubMed DOI PMC
Kelley S., Boroda S., Musier-Forsyth K., Kankia B.I. HIV-integrase aptamer folds into a parallel quadruplex: A thermodynamic study. Biophys. Chem. 2011;155:82–88. doi: 10.1016/j.bpc.2011.03.004. PubMed DOI
Zhou J., Amrane S., Rosu F., Salgado G.F., Bian Y., Tateishi-Karimata H., Largy E., Korkut D.N., Bourdoncle A., Miyoshi D., et al. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J. Am. Chem. Soc. 2017;139:7768–7779. doi: 10.1021/jacs.7b00648. PubMed DOI
Lombardi E.P., Holmes A., Verga D., Teulade-Fichou M.-P., Nicolas A., Londoño-Vallejo A. Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 2019;47:6098–6113. doi: 10.1093/nar/gkz463. PubMed DOI PMC
Heddi B., Martin-Pintado N., Serimbetov Z., Kari T.M.A., Phan A.T. G-quadruplexes with (4n − 1) guanines in the G-tetrad core: Formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res. 2015;44:910–916. doi: 10.1093/nar/gkv1357. PubMed DOI PMC
Mukundan V.T., Do N.Q., Phan A.T. HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res. 2011;39:8984–8991. doi: 10.1093/nar/gkr540. PubMed DOI PMC
Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. PubMed DOI
An N., Fleming A.M., Burrows C.J. Human Telomere G-Quadruplexes with Five Repeats Accommodate 8-Oxo-7,8-dihydroguanine by Looping out the DNA Damage. ACS Chem. Boil. 2015;11:500–507. doi: 10.1021/acschembio.5b00844. PubMed DOI PMC
Beckett J., Burns J., Broxson C., Tornaletti S. Spontaneous DNA Lesions Modulate DNA Structural Transitions Occurring at Nuclease Hypersensitive Element III1 of the Human c-myc Proto-Oncogene. Biochemie. 2012;51:5257–5268. doi: 10.1021/bi300304k. PubMed DOI
Dvořáková Z., Vorlíčková M., Renčiuk D. Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017;1861:2750–2757. doi: 10.1016/j.bbagen.2017.07.019. PubMed DOI
Fleming A.M., Zhou J., Wallace S.S., Burrows C.J. A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These “Spare Tires” Have an Evolved Function? ACS Central Sci. 2015;1:226–233. doi: 10.1021/acscentsci.5b00202. PubMed DOI PMC
Islam B., Stadlbauer P., Vorlickova M., Mergny J., Otyepka M., Sponer J. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. J. Chem. Theory Comput. 2020;16:3447–3463. doi: 10.1021/acs.jctc.9b01068. PubMed DOI
Guédin A., De Cian A., Gros J., Lacroix L., Mergny J. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008;90:686–696. doi: 10.1016/j.biochi.2008.01.009. PubMed DOI
Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E.A. Multimerization rules for G-quadruplexes. Nucleic Acids Res. 2017;45:8684–8696. doi: 10.1093/nar/gkx637. PubMed DOI PMC
Kolesnikova S., Curtis E.A. Structure and Function of Multimeric G-Quadruplexes. Molecules. 2019;24:3074. doi: 10.3390/molecules24173074. PubMed DOI PMC
Kogut M., Kleist C., Czub J. Why do G-quadruplexes dimerize through the 5′-ends? Driving forces for G4 DNA dimerization examined in atomic detail. PLoS Comput. Biol. 2019;15:e1007383. doi: 10.1371/journal.pcbi.1007383. PubMed DOI PMC
Krishnan-Ghosh Y., Liu D., Balasubramanian S. Formation of an Interlocked Quadruplex Dimer by d(GGGT) J. Am. Chem. Soc. 2004;126:11009–11016. doi: 10.1021/ja049259y. PubMed DOI
Do N.Q., Lim K.W., Teo M.H., Heddi B., Phan A.T. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity†. Nucleic Acids Res. 2011;39:9448–9457. doi: 10.1093/nar/gkr539. PubMed DOI PMC
Do N.Q., Phan A.T. Monomer–Dimer Equilibrium for the 5′–5′ Stacking of Propeller-Type Parallel-Stranded G-Quadruplexes: NMR Structural Study. Chem. Eur. J. 2012;18:14752–14759. doi: 10.1002/chem.201103295. PubMed DOI
Renčiuk D., Ryneš J., Kejnovská I., Foldynová-Trantírková S., Andäng M., Trantírek L., Vorlíčková M. G-quadruplex formation in the Oct4 promoter positively regulates Oct4 expression. Biochim. Biophys. Acta (BBA) Bioenerg. 2017;1860:175–183. doi: 10.1016/j.bbagrm.2016.11.002. PubMed DOI
Bednářová K., Kejnovská I., Vorlíčková M., Renčiuk D. Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex. Chem. Eur. J. 2019;25:13422–13428. doi: 10.1002/chem.201903015. PubMed DOI
Jing N., Rando R.F., Pommier Y., Hogan M.E. Ion Selective Folding of Loop Domains in a Potent Anti-HIV Oligonucleotide. Biochemie. 1997;36:12498–12505. doi: 10.1021/bi962798y. PubMed DOI
Varizhuk A.M., Protopopova A.D., Tsvetkov V.B., Barinov N., Podgorsky V., Tankevich M.V., A Vlasenok M., Severov V.V., Smirnov I.P., Dubrovin E.V., et al. Polymorphism of G4 associates: From stacks to wires via interlocks. Nucleic Acids Res. 2018;46:8978–8992. doi: 10.1093/nar/gky729. PubMed DOI PMC
Kejnovská I., Bednárová K., Renciuk D., Dvoráková Z., Školáková P., Trantírek L., Fiala R., Vorlícková M., Sagi J. Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res. 2017;45:4294–4305. doi: 10.1093/nar/gkx191. PubMed DOI PMC
Material not intended for publication: Bednářová, K. and Renčiuk, D. Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic. Stopped-flow-assisted circular dichroism and UV absorption measurements of formation kinetics of guanine quadruplexes. 2019.
Šponer J., Bussi G., Stadlbauer P., Kührová P., Banas P., Islam B., Haider S.M., Neidle S., Otyepka M. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017;1861:1246–1263. doi: 10.1016/j.bbagen.2016.12.008. PubMed DOI
Gray R.D., Trent J.O., Arumugam S., Chaires J.B. Folding Landscape of a Parallel G-Quadruplex. J. Phys. Chem. Lett. 2019;10:1146–1151. doi: 10.1021/acs.jpclett.9b00227. PubMed DOI PMC
Mergny J., Phan A.T., Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435:74–78. doi: 10.1016/S0014-5793(98)01043-6. PubMed DOI
Zhang A.Y.Q., Balasubramanian S. The Kinetics and Folding Pathways of Intramolecular G-Quadruplex Nucleic Acids. J. Am. Chem. Soc. 2012;134:19297–19308. doi: 10.1021/ja309851t. PubMed DOI
Yett A., Lin L.Y., Beseiso D., Miao J., Yatsunyk L.A. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyrins Phthalocyanines. 2019;23:1195–1215. doi: 10.1142/S1088424619300179. PubMed DOI PMC
Nicoludis J.M., Miller S.T., Jeffrey P.D., Barrett S.P., Rablen P.R., Lawton T.J., Yatsunyk L.A. Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2012;134:20446–20456. doi: 10.1021/ja3088746. PubMed DOI
Harkness R.W., Mittermaier A.K. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res. 2016;44:3481–3494. doi: 10.1093/nar/gkw190. PubMed DOI PMC
Guédin A., Gros J., Alberti P., Mergny J. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC
Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. doi: 10.1021/ja045154j. PubMed DOI
Kejnovská I., Renčiuk D., Palacký J., Vorlíčková M. Methods in Molecular Biology. Volume 2035. Springer Science and Business Media LLC; Berlin, Germany: 2019. CD Study of the G-Quadruplex Conformation; pp. 25–44. PubMed
Mergny J., Lacroix L. Analysis of Thermal Melting Curves. Oligonucleotides. 2003;13:515–537. doi: 10.1089/154545703322860825. PubMed DOI