Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions

. 2020 Aug 25 ; 21 (17) : . [epub] 20200825

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32854410

Grantová podpora
17-19170Y Grantová Agentura České Republiky
20-20229S Grantová Agentura České Republiky
19-17063S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477 European Regional Development Fund

Recently, we reported an inhibitory effect of guanine substitutions on the conformational switch from antiparallel to parallel quadruplexes (G4) induced by dehydrating agents. As a possible cause, we proposed a difference in the sensitivity of parallel and antiparallel quadruplexes to the guanine substitutions in the resulting thermodynamic stability. Reports on the influence of guanine substitutions on the biophysical properties of intramolecular parallel quadruplexes are rare. Moreover, such reports are often complicated by the multimerisation tendencies of parallel quadruplexes. To address this incomplete knowledge, we employed circular dichroism spectroscopy (CD), both as stopped-flow-assisted fast kinetics measurements and end-point measurements, accompanied by thermodynamic analyses, based on UV absorption melting profiles, and electrophoretic methods. We showed that parallel quadruplexes are significantly more sensitive towards guanine substitutions than antiparallel ones. Furthermore, guanine-substituted variants, which in principle might correspond to native genomic sequences, distinctly differ in their biophysical properties, indicating that the four guanines in each tetrad of parallel quadruplexes are not equal. In addition, we were able to distinguish by CD an intramolecular G4 from intermolecular ones resulting from multimerisation mediated by terminal tetrad association, but not from intermolecular G4s formed due to inter-strand Hoogsteen hydrogen bond formation. In conclusion, our study indicates significant variability in parallel quadruplex structures, otherwise disregarded without detailed experimental analysis.

Zobrazit více v PubMed

Neidle S., Balasubramanian S. Quadruplex Nucleic Acids. Royal Society of Chemistry; London, Cambridge, UK: 2006. pp. 1–3.

Miyoshi D., Fujimoto T., Sugimoto N. Molecular Crowding and Hydration Regulating of G-Quadruplex Formation. Quadruplex Nucleic Acids. 2012;330:87–110. doi: 10.1007/128_2012_335. PubMed DOI

Zhou J., Tateishi-Karimata H., Mergny J., Cheng M., Feng Z., Miyoshi D., Sugimoto N., Li C. Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie. 2016;121:204–208. doi: 10.1016/j.biochi.2015.12.012. PubMed DOI

Huppert J., Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC

Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., Di Antonio M., Balasubramanian S. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47:3862–3874. doi: 10.1093/nar/gkz179. PubMed DOI PMC

Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. PubMed DOI PMC

Varizhuk A.M., Ischenko D., Tsvetkov V.B., Novikov R., Kulemin N.A., Kaluzhny D., Vlasenok M., Naumov V., Smirnov I., Pozmogova G. The expanding repertoire of G4 DNA structures. Biochimie. 2017;135:54–62. doi: 10.1016/j.biochi.2017.01.003. PubMed DOI

Lightfoot H.L., Hagen T., Tatum N.J., Hall J. The diverse structural landscape of quadruplexes. FEBS Lett. 2019;593:2083–2102. doi: 10.1002/1873-3468.13547. PubMed DOI

Konvalinová H., Dvorakova Z., Renčiuk D., Bednářová K., Kejnovska I., Trantírek L., Vorlíčková M., Sagi J. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015;118:15–25. doi: 10.1016/j.biochi.2015.07.013. PubMed DOI

Sagi J. G-quadruplexes incorporating modified constituents: A review. J. Biomol. Struct. Dyn. 2013;32:477–511. doi: 10.1080/07391102.2013.775074. PubMed DOI

Esposito V., Martino L., Citarella G., Virgilio A., Mayol L., Giancola C., Galeone A. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res. 2009;38:2069–2080. doi: 10.1093/nar/gkp1087. PubMed DOI PMC

Kelley S., Boroda S., Musier-Forsyth K., Kankia B.I. HIV-integrase aptamer folds into a parallel quadruplex: A thermodynamic study. Biophys. Chem. 2011;155:82–88. doi: 10.1016/j.bpc.2011.03.004. PubMed DOI

Zhou J., Amrane S., Rosu F., Salgado G.F., Bian Y., Tateishi-Karimata H., Largy E., Korkut D.N., Bourdoncle A., Miyoshi D., et al. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J. Am. Chem. Soc. 2017;139:7768–7779. doi: 10.1021/jacs.7b00648. PubMed DOI

Lombardi E.P., Holmes A., Verga D., Teulade-Fichou M.-P., Nicolas A., Londoño-Vallejo A. Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species. Nucleic Acids Res. 2019;47:6098–6113. doi: 10.1093/nar/gkz463. PubMed DOI PMC

Heddi B., Martin-Pintado N., Serimbetov Z., Kari T.M.A., Phan A.T. G-quadruplexes with (4n − 1) guanines in the G-tetrad core: Formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res. 2015;44:910–916. doi: 10.1093/nar/gkv1357. PubMed DOI PMC

Mukundan V.T., Do N.Q., Phan A.T. HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res. 2011;39:8984–8991. doi: 10.1093/nar/gkr540. PubMed DOI PMC

Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. PubMed DOI

An N., Fleming A.M., Burrows C.J. Human Telomere G-Quadruplexes with Five Repeats Accommodate 8-Oxo-7,8-dihydroguanine by Looping out the DNA Damage. ACS Chem. Boil. 2015;11:500–507. doi: 10.1021/acschembio.5b00844. PubMed DOI PMC

Beckett J., Burns J., Broxson C., Tornaletti S. Spontaneous DNA Lesions Modulate DNA Structural Transitions Occurring at Nuclease Hypersensitive Element III1 of the Human c-myc Proto-Oncogene. Biochemie. 2012;51:5257–5268. doi: 10.1021/bi300304k. PubMed DOI

Dvořáková Z., Vorlíčková M., Renčiuk D. Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017;1861:2750–2757. doi: 10.1016/j.bbagen.2017.07.019. PubMed DOI

Fleming A.M., Zhou J., Wallace S.S., Burrows C.J. A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These “Spare Tires” Have an Evolved Function? ACS Central Sci. 2015;1:226–233. doi: 10.1021/acscentsci.5b00202. PubMed DOI PMC

Islam B., Stadlbauer P., Vorlickova M., Mergny J., Otyepka M., Sponer J. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations. J. Chem. Theory Comput. 2020;16:3447–3463. doi: 10.1021/acs.jctc.9b01068. PubMed DOI

Guédin A., De Cian A., Gros J., Lacroix L., Mergny J. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008;90:686–696. doi: 10.1016/j.biochi.2008.01.009. PubMed DOI

Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E.A. Multimerization rules for G-quadruplexes. Nucleic Acids Res. 2017;45:8684–8696. doi: 10.1093/nar/gkx637. PubMed DOI PMC

Kolesnikova S., Curtis E.A. Structure and Function of Multimeric G-Quadruplexes. Molecules. 2019;24:3074. doi: 10.3390/molecules24173074. PubMed DOI PMC

Kogut M., Kleist C., Czub J. Why do G-quadruplexes dimerize through the 5′-ends? Driving forces for G4 DNA dimerization examined in atomic detail. PLoS Comput. Biol. 2019;15:e1007383. doi: 10.1371/journal.pcbi.1007383. PubMed DOI PMC

Krishnan-Ghosh Y., Liu D., Balasubramanian S. Formation of an Interlocked Quadruplex Dimer by d(GGGT) J. Am. Chem. Soc. 2004;126:11009–11016. doi: 10.1021/ja049259y. PubMed DOI

Do N.Q., Lim K.W., Teo M.H., Heddi B., Phan A.T. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity†. Nucleic Acids Res. 2011;39:9448–9457. doi: 10.1093/nar/gkr539. PubMed DOI PMC

Do N.Q., Phan A.T. Monomer–Dimer Equilibrium for the 5′–5′ Stacking of Propeller-Type Parallel-Stranded G-Quadruplexes: NMR Structural Study. Chem. Eur. J. 2012;18:14752–14759. doi: 10.1002/chem.201103295. PubMed DOI

Renčiuk D., Ryneš J., Kejnovská I., Foldynová-Trantírková S., Andäng M., Trantírek L., Vorlíčková M. G-quadruplex formation in the Oct4 promoter positively regulates Oct4 expression. Biochim. Biophys. Acta (BBA) Bioenerg. 2017;1860:175–183. doi: 10.1016/j.bbagrm.2016.11.002. PubMed DOI

Bednářová K., Kejnovská I., Vorlíčková M., Renčiuk D. Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex. Chem. Eur. J. 2019;25:13422–13428. doi: 10.1002/chem.201903015. PubMed DOI

Jing N., Rando R.F., Pommier Y., Hogan M.E. Ion Selective Folding of Loop Domains in a Potent Anti-HIV Oligonucleotide. Biochemie. 1997;36:12498–12505. doi: 10.1021/bi962798y. PubMed DOI

Varizhuk A.M., Protopopova A.D., Tsvetkov V.B., Barinov N., Podgorsky V., Tankevich M.V., A Vlasenok M., Severov V.V., Smirnov I.P., Dubrovin E.V., et al. Polymorphism of G4 associates: From stacks to wires via interlocks. Nucleic Acids Res. 2018;46:8978–8992. doi: 10.1093/nar/gky729. PubMed DOI PMC

Kejnovská I., Bednárová K., Renciuk D., Dvoráková Z., Školáková P., Trantírek L., Fiala R., Vorlícková M., Sagi J. Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res. 2017;45:4294–4305. doi: 10.1093/nar/gkx191. PubMed DOI PMC

Material not intended for publication: Bednářová, K. and Renčiuk, D. Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic. Stopped-flow-assisted circular dichroism and UV absorption measurements of formation kinetics of guanine quadruplexes. 2019.

Šponer J., Bussi G., Stadlbauer P., Kührová P., Banas P., Islam B., Haider S.M., Neidle S., Otyepka M. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017;1861:1246–1263. doi: 10.1016/j.bbagen.2016.12.008. PubMed DOI

Gray R.D., Trent J.O., Arumugam S., Chaires J.B. Folding Landscape of a Parallel G-Quadruplex. J. Phys. Chem. Lett. 2019;10:1146–1151. doi: 10.1021/acs.jpclett.9b00227. PubMed DOI PMC

Mergny J., Phan A.T., Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435:74–78. doi: 10.1016/S0014-5793(98)01043-6. PubMed DOI

Zhang A.Y.Q., Balasubramanian S. The Kinetics and Folding Pathways of Intramolecular G-Quadruplex Nucleic Acids. J. Am. Chem. Soc. 2012;134:19297–19308. doi: 10.1021/ja309851t. PubMed DOI

Yett A., Lin L.Y., Beseiso D., Miao J., Yatsunyk L.A. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyrins Phthalocyanines. 2019;23:1195–1215. doi: 10.1142/S1088424619300179. PubMed DOI PMC

Nicoludis J.M., Miller S.T., Jeffrey P.D., Barrett S.P., Rablen P.R., Lawton T.J., Yatsunyk L.A. Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2012;134:20446–20456. doi: 10.1021/ja3088746. PubMed DOI

Harkness R.W., Mittermaier A.K. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res. 2016;44:3481–3494. doi: 10.1093/nar/gkw190. PubMed DOI PMC

Guédin A., Gros J., Alberti P., Mergny J. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC

Hazel P., Huppert J., Balasubramanian S., Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. doi: 10.1021/ja045154j. PubMed DOI

Kejnovská I., Renčiuk D., Palacký J., Vorlíčková M. Methods in Molecular Biology. Volume 2035. Springer Science and Business Media LLC; Berlin, Germany: 2019. CD Study of the G-Quadruplex Conformation; pp. 25–44. PubMed

Mergny J., Lacroix L. Analysis of Thermal Melting Curves. Oligonucleotides. 2003;13:515–537. doi: 10.1089/154545703322860825. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace