Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
17-19170Y
Grantová Agentura České Republiky
19-17063S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000477
European Regional Development Fund
- Keywords
- DNA structures, G-quadruplexes, circular dichroism, dehydrating environment, modified nucleobases,
- Publication type
- Journal Article MeSH
Guanine quadruplexes, recently reported to form in vivo, represent a broad spectrum of non-canonical conformations of nucleic acids. The actual conformation might differ between water solutions and crowding or dehydrating solutions that better reflect the conditions in the cell. Here we show, using spectroscopic techniques, that most guanine substitutions prevent the conformational switch from antiparallel or hybrid forms to parallel ones when induced by dehydrating agents. The inhibitory effect does not depend on the position of the substitution, but, interestingly, on the type of substitution and, to some extent, on its destabilising potential. A parallel form might be induced in some cases by ligands such as N-methyl mesoporphyrin IX and even this ligand-induced switch is inhibited by guanine substitution. The ability or inability to have a conformation switch, based on actual conditions, might significantly influence potential conformation-dependent quadruplex interactions.
See more in PubMed
A. P. Minton, J. Biol. Chem. 2001, 276, 10577-10580;
S.-i. Nakano, D. Miyoshi, N. Sugimoto, Chem. Rev. 2014, 114, 2733-2758.
D. Miyoshi, A. Nakao, N. Sugimoto, Biochemistry 2002, 41, 15017-15024.
M. Vorlíčková, K. Bednarova, I. Kejnovska, J. Kypr, Biopolymers 2007, 86, 1-10.
Y. Xue, Z. Y. Kan, Q. Wang, Y. Yao, J. Liu, Y. H. Hao, Z. Tan, J. Am. Chem. Soc. 2007, 129, 11185-11191.
D. Renčiuk, I. Kejnovska, P. Skolakova, K. Bednarova, J. Motlova, M. Vorlickova, Nucleic Acids Res. 2009, 37, 6625-6634.
T. Fujimoto, S.-i. Nakano, D. Miyoshi, N. Sugimoto, J. Nucleic Acids 2011, 2011, 9.
J. Zhou, H. Tateishi-Karimata, J.-L. Mergny, M. Cheng, Z. Feng, D. Miyoshi, N. Sugimoto, C. Li, Biochimie 2016, 121, 204-208.
R. Hänsel, F. Lohr, S. Foldynova-Trantirkova, E. Bamberg, L. Trantirek, V. Dotsch, Nucleic Acids Res. 2011, 39, 5768-5775.
P. Školáková, K. Bednarova, M. Vorlickova, J. Sagi, Biochem. Biophys. Res. Commun. 2010, 399, 203-208;
M. Tomaško, M. Vorlickova, J. Sagi, Biochimie 2009, 91, 171-179;
M. Vorlícková, M. Tomasko, A. J. Sagi, K. Bednarova, J. Sagi, FEBS J. 2012, 279, 29-39.
I. Kejnovská, K. Bednářová, D. Renčiuk, Z. Dvořáková, P. Školáková, L. Trantírek, R. Fiala, M. Vorlíčková, J. Sagi, Nucleic Acids Res. 2017, 45, 4294-4305.
K. W. Lim, S. Amrane, S. Bouaziz, W. X. Xu, Y. G. Mu, D. J. Patel, K. N. Luu, A. T. Phan, J. Am. Chem. Soc. 2009, 131, 4301-4309.
D. M. Gray, J. D. Wen, C. W. Gray, R. Repges, C. Repges, G. Raabe, J. Fleischhauer, Chirality 2008, 20, 431-440;
S. Masiero, R. Trotta, S. Pieraccini, S. De Tito, R. Perone, A. Randazzo, G. P. Spada, Org. Biomol. Chem. 2010, 8, 2683-2872.
J. M. Nicoludis, S. P. Barrett, J. L. Mergny, L. A. Yatsunyk, Nucleic Acids Res. 2012, 40, 5432-5447.
P. Hazel, J. Huppert, S. Balasubramanian, S. Neidle, J. Am. Chem. Soc. 2004, 126, 16405-16415;
A. Guédin, J. Gros, P. Alberti, J.-L. Mergny, Nucleic Acids Res. 2010, 38, 7858-7868.
A. Guédin, P. Alberti, J.-L. Mergny, Nucleic Acids Res. 2009, 37, 5559-5567.
B. Heddi, A. T. Phan, J. Am. Chem. Soc. 2011, 133, 9824-9833.
H. Q. Yu, X. B. Gu, S. Nakano, D. Miyoshi, N. Sugimoto, J. Am. Chem. Soc. 2012, 134, 20060-20069.
M. C. Miller, R. Buscaglia, J. B. Chaires, A. N. Lane, J. O. Trent, J. Am. Chem. Soc. 2010, 132, 17105-17107.
R. Buscaglia, M. C. Miller, W. L. Dean, R. D. Gray, A. N. Lane, J. O. Trent, J. B. Chaires, Nucleic Acids Res. 2013, 41, 7934-7946;
M. Trajkovski, T. Endoh, H. Tateishi-Karimata, T. Ohyama, S. Tanaka, J. Plavec, N. Sugimoto, Nucleic acids res. 2018, 46, 4301-4315.
S.-K. Wang, H.-F. Su, Y.-C. Gu, S.-L. Lin, J.-H. Tan, Z.-S. Huang, T.-M. Ou, Biochem. Biophys. Rep. 2015, 5, 439-447.
M. Vorlíčková, K. Bednarova, J. Kypr, Biopolymers 2006, 82, 253-260.
A. Verdian Doghaei, M. R. Housaindokht, M. R. Bozorgmehr, J. Theor. Biol. 2015, 364, 103-112.
Z. Y. Kan, Y. A. Yao, P. Wang, X. H. Li, Y. H. Hao, Z. Tan, Angew. Chem. Int. Ed. 2006, 45, 1629-1632;
Angew. Chem. 2006, 118, 1659-1662.
T. Fujii, P. Podbevšek, J. Plavec, N. Sugimoto, J. Inorg. Biochem. 2017, 166, 190-198.
B. Heddi, N. Martín-Pintado, Z. Serimbetov, T. M. A. Kari, A. T. Phan, Nucleic Acids Res. 2016, 44, 910-916.
V. Esposito, A. Randazzo, G. Piccialli, L. Petraccone, C. Giancola, L. Mayol, Org. Biomol. Chem. 2004, 2, 313-318.
M. Adámik, I. Kejnovská, P. Bažantová, M. Petr, D. Renčiuk, M. Vorlíčková, M. Brázdová, Biochimie 2016, 128-129, 83-91.
V. S. Chambers, G. Marsico, J. M. Boutell, M. Di Antonio, G. P. Smith, S. Balasubramanian, Nat. Biotechnol. 2015, 33, 877-881.
J. L. Mergny, L. Lacroix, Oligonucleotides 2003, 13, 515-537.
Diversity of Parallel Guanine Quadruplexes Induced by Guanine Substitutions