• Je něco špatně v tomto záznamu ?

Aethionema arabicum: a novel model plant to study the light control of seed germination

Z. Mérai, K. Graeber, P. Wilhelmsson, KK. Ullrich, W. Arshad, C. Grosche, D. Tarkowská, V. Turečková, M. Strnad, SA. Rensing, G. Leubner-Metzger, O. Mittelsten Scheid,

. 2019 ; 70 (12) : 3313-3328. [pub] 20190628

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025817

Grantová podpora
BB/M00192X/1 Biotechnology and Biological Sciences Research Council - United Kingdom

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025817
003      
CZ-PrNML
005      
20201222154116.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/jxb/erz146 $2 doi
035    __
$a (PubMed)30949700
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Mérai, Zsuzsanna $u Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse, Vienna, Austria.
245    10
$a Aethionema arabicum: a novel model plant to study the light control of seed germination / $c Z. Mérai, K. Graeber, P. Wilhelmsson, KK. Ullrich, W. Arshad, C. Grosche, D. Tarkowská, V. Turečková, M. Strnad, SA. Rensing, G. Leubner-Metzger, O. Mittelsten Scheid,
520    9_
$a The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.
650    _2
$a kyselina abscisová $x metabolismus $7 D000040
650    _2
$a Brassicaceae $x fyziologie $x účinky záření $7 D019607
650    _2
$a exprese genu $x účinky záření $7 D015870
650    12
$a rostlinné geny $7 D017343
650    _2
$a klíčení $x účinky záření $7 D018525
650    _2
$a gibereliny $x metabolismus $7 D005875
650    12
$a sluneční záření $7 D013472
650    _2
$a transkriptom $x účinky léků $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Graeber, Kai $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK.
700    1_
$a Wilhelmsson, Per $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
700    1_
$a Ullrich, Kristian K $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
700    1_
$a Arshad, Waheed $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK.
700    1_
$a Grosche, Christopher $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
700    1_
$a Tarkowská, Danuše $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
700    1_
$a Turečková, Veronika $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
700    1_
$a Strnad, Miroslav $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
700    1_
$a Rensing, Stefan A $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
700    1_
$a Leubner-Metzger, Gerhard $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK. Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
700    1_
$a Mittelsten Scheid, Ortrun $u Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse, Vienna, Austria.
773    0_
$w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 70, č. 12 (2019), s. 3313-3328
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30949700 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154112 $b ABA008
999    __
$a ok $b bmc $g 1599962 $s 1116503
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 70 $c 12 $d 3313-3328 $e 20190628 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
GRA    __
$a BB/M00192X/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...