-
Something wrong with this record ?
Aethionema arabicum: a novel model plant to study the light control of seed germination
Z. Mérai, K. Graeber, P. Wilhelmsson, KK. Ullrich, W. Arshad, C. Grosche, D. Tarkowská, V. Turečková, M. Strnad, SA. Rensing, G. Leubner-Metzger, O. Mittelsten Scheid,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/M00192X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Free Medical Journals
from 1996 to 1 year ago
Open Access Digital Library
from 1996-01-01
PubMed
30949700
DOI
10.1093/jxb/erz146
Knihovny.cz E-resources
- MeSH
- Brassicaceae physiology radiation effects MeSH
- Gene Expression radiation effects MeSH
- Gibberellins metabolism MeSH
- Germination radiation effects MeSH
- Abscisic Acid metabolism MeSH
- Genes, Plant * MeSH
- Sunlight * MeSH
- Transcriptome drug effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025817
- 003
- CZ-PrNML
- 005
- 20201222154116.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/jxb/erz146 $2 doi
- 035 __
- $a (PubMed)30949700
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Mérai, Zsuzsanna $u Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse, Vienna, Austria.
- 245 10
- $a Aethionema arabicum: a novel model plant to study the light control of seed germination / $c Z. Mérai, K. Graeber, P. Wilhelmsson, KK. Ullrich, W. Arshad, C. Grosche, D. Tarkowská, V. Turečková, M. Strnad, SA. Rensing, G. Leubner-Metzger, O. Mittelsten Scheid,
- 520 9_
- $a The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.
- 650 _2
- $a kyselina abscisová $x metabolismus $7 D000040
- 650 _2
- $a Brassicaceae $x fyziologie $x účinky záření $7 D019607
- 650 _2
- $a exprese genu $x účinky záření $7 D015870
- 650 12
- $a rostlinné geny $7 D017343
- 650 _2
- $a klíčení $x účinky záření $7 D018525
- 650 _2
- $a gibereliny $x metabolismus $7 D005875
- 650 12
- $a sluneční záření $7 D013472
- 650 _2
- $a transkriptom $x účinky léků $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Graeber, Kai $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK.
- 700 1_
- $a Wilhelmsson, Per $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
- 700 1_
- $a Ullrich, Kristian K $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
- 700 1_
- $a Arshad, Waheed $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK.
- 700 1_
- $a Grosche, Christopher $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
- 700 1_
- $a Tarkowská, Danuše $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
- 700 1_
- $a Turečková, Veronika $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
- 700 1_
- $a Strnad, Miroslav $u Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
- 700 1_
- $a Rensing, Stefan A $u Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str., Marburg, Germany.
- 700 1_
- $a Leubner-Metzger, Gerhard $u School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK. Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů, Olomouc, Czech Republic.
- 700 1_
- $a Mittelsten Scheid, Ortrun $u Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse, Vienna, Austria.
- 773 0_
- $w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 70, č. 12 (2019), s. 3313-3328
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30949700 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154112 $b ABA008
- 999 __
- $a ok $b bmc $g 1599962 $s 1116503
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 70 $c 12 $d 3313-3328 $e 20190628 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
- GRA __
- $a BB/M00192X/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125