Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31569609
PubMed Central
PMC6836133
DOI
10.3390/polym11101571
PII: polym11101571
Knihovny.cz E-zdroje
- Klíčová slova
- Bis-GMA polymer, compressive behavior, finite element method, hyperelastic constitutive model, nano-indentation experiment,
- Publikační typ
- časopisecké články MeSH
Despite wide industrial applications of Bis-GMA polymer, very few studies are available about the material classification, mechanical properties, and behavior of this material. In this study, the compressive behavior of Bis-GMA polymer was studied using different hyperelastic constitutive models through a hybrid experimental-computational process. Standard uniaxial compression tests were conducted to extract the mechanical behavior and structural response of the Bis-GMA polymer. A nano-indentation experiment was used to verify the compressive behavior of Bis-GMA polymer in the form of hyperelastic behavior. The finite element model and real-time simulation of the test incorporating different hyperelastic models were developed in comparison with the experimental finding to obtain the proper type of hyperelastic behavior of Bis-GMA polymer. The results indicate that a second-order polynomial hyperelastic model is the best fit to predict the behavior of Bis-GMA polymer. Next, the validated model was used to determine the true stress-strain curve of the Bis-GMA polymer.
Centre of Advanced Composite Materials Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
School of Mechanical Engineering Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
Zobrazit více v PubMed
Koloor S.S.R., Khosravani M.R., Hamzah R.I.R., Tamin M.N. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Douba A., Emiroglu M., Kandil U.F., Reda Taha M.M. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019;196:468–477. doi: 10.1016/j.conbuildmat.2018.11.021. DOI
Arakawa K., Mada T., Todo M., Takahashi J., Ooka S. Impact tensile fracture testing of a brittle polymer. Polym. Test. 2006;25:1095–1100. doi: 10.1016/j.polymertesting.2006.07.006. DOI
Rahimi A.S., Ayatollahi M.R., Torabi A.R. Ductile failure analysis of blunt V-notched epoxy resin plates subjected to combined tension-shear loading. Polym. Test. 2018;70:57–66. doi: 10.1016/j.polymertesting.2018.06.017. DOI
Yang L.M., Shim V.P.W., Lim C.T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int. J. Impact Eng. 2000;24:545–560. doi: 10.1016/S0734-743X(99)00044-5. DOI
Khalajmasoumi M., Koloor S.S.R., Arefnia A., Ibrahim I.S., Yatim J.M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Appl. Mech. Mater. 2012;229–231:309–313. doi: 10.4028/www.scientific.net/AMM.229-231.309. DOI
Muhr A.H. Modeling the Stress–strain Behavior of Rubber. Rubber Chem. Technol. 2005;78:391–425. doi: 10.5254/1.3547890. DOI
Elhaouzi F., Nourdine A., Brosseau C., Mdarhri A., El Aboudi I., Zaghrioui M. Hyperelastic Behavior and Dynamic Mechanical Relaxation in Carbon Black-Polymer Composites. Polym. Compos. 2018 doi: 10.1002/pc.25142. DOI
Shin H., Choi J., Cho M. An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos. Sci. Technol. 2019;175:128–134. doi: 10.1016/j.compscitech.2019.03.015. DOI
Ju M.L., Mezghani S., Jmal H., Dupuis R., Aubry E. Parameter estimation of a hyperelastic constitutive model for the description of polyurethane foam in large deformation. Cell. Polym. 2013;32:21–40. doi: 10.1177/026248931303200102. DOI
Chen Z., Diebels S. Modelling and parameter re-identification of nanoindentation of soft polymers taking into account effects of surface roughness. Comput. Math. Appl. 2012;64:2775–2786. doi: 10.1016/j.camwa.2012.04.010. DOI
Luczynski K.W., Dejaco A., Lahayne O., Jaroszewicz J., Swieszkowski W., Hellmich C. MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young’s Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold. Comput. Model. Eng. Sci. 2012;87:505–528.
Mathews M., Wang H.-T., Li L. Finite Element Analysis of Nanoindentation and Elastic Behavior of Bi2Te3 Two-Dimensional Nanosheets. ECS J. Solid State Sci. Technol. 2016;5:Q3082–Q3087. doi: 10.1149/2.0151611jss. DOI
Lin D.C., Shreiber D.I., Dimitriadis E.K., Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: Numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 2009;8:345–358. doi: 10.1007/s10237-008-0139-9. PubMed DOI PMC
Ehret A.E., Itskov M. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 2007;42:8853–8863. doi: 10.1007/s10853-007-1812-6. DOI
Zhang P., To A.C. Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers. Int. J. Plast. 2016;80:56–74. doi: 10.1016/j.ijplas.2015.12.012. DOI
Bois P.A.D., Kolling S., Koesters M., Frank T. Material behaviour of polymers under impact loading. Int. J. Impact Eng. 2006;32:725–740. doi: 10.1016/j.ijimpeng.2005.02.007. DOI
Ayoub G., Zaïri F., Fréderix C., Gloaguen J.M., Naït-Abdelaziz M., Seguela R., Lefebvre J.M. Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling. Int. J. Plast. 2011;27:492–511. doi: 10.1016/j.ijplas.2010.07.005. DOI
Ottosen N.S., Ristinmaa M. Hyperelasticity. In: Ottosen N.S., Ristinmaa M., editors. The Mechanics of Constitutive Modeling. Elsevier Science Ltd.; Oxford, UK: 2005. pp. 67–102. DOI
Shannahan L.S. Ph.D. Thesis. Drexel University; Ann Arbor, MI, USA: 2017. A Hybrid Experimental-Computational Approach for the Analysis of Dynamic Fracture.
Perahia D., Grest G.S. From Interfaces to Bulk: Experimental-Computational Studies Across Time and Length Scales of Multi-Functional Ionic Polymers. Clemson Univ.; Clemson, SC, USA: 2017. DOE-Clemson-001. DOI
Meredig B., Wolverton C. A hybrid computational–experimental approach for automated crystal structure solution. Nat. Mater. 2013;12:123–127. doi: 10.1038/nmat3490. PubMed DOI
Tamin M.N., Nor F.M., Wei Keat L. Hybrid Experimental-Computational Approach for Solder/IMC Interface Shear Strength Determination in Solder Joints. IEEE Trans. Compon. Packag. Technol. 2010;33:614–620. doi: 10.1109/TCAPT.2010.2050887. DOI
Khalajmasoumi M., Koloor S.S.R., Arefnia A., Ibrahim I.S., Yatim J.M. Finite element analysis of curvature precast polymer panel for temporary support of tunnels. Appl. Mech. Mater. 2012;229–231:771–777. doi: 10.4028/www.scientific.net/AMM.229-231.771. DOI
Praharaj A.P., Behera D., Bastia T.K. Fabrication and Mechanical Properties of BisGMA/Amine Functionalized Paper Pulp Composites. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3:12719–12723.
MacDonald K., Boyd D. Mechanical loading, an important factor in the evaluation of ion release from bone augmentation materials. Sci. Rep. 2018;8:14225. doi: 10.1038/s41598-018-32325-1. PubMed DOI PMC
Kawanabe K., Tamura J., Yamamuro T., Nakamura T., Kokubo T., Yoshihara S. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. J. Appl. Biomater. 1993;4:135–141. doi: 10.1002/jab.770040204. PubMed DOI
Sideridou I., Tserki V., Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23:1819–1829. doi: 10.1016/S0142-9612(01)00308-8. PubMed DOI
Linden L. Dental polymers. In: Salamone C., editor. Polymeric Materials Encyclopedia. Volume 3D–E. CRC Press; New York, NY, USA: 1996. p. 1839.
Hosseinzadeh-Nik T., Karimzadeh A., Ayatollahi M.R. Bond strength of a nano-composite used for bonding ceramic orthodontic brackets. Mater. Des. 2013;51:902–906. doi: 10.1016/j.matdes.2013.05.002. DOI
Karimzadeh A., Ayatollahi M.R., Hosseinzadeh-Nik T. Effects of a Nano-composite Adhesive on Mechanical Properties of Tooth Enamel After Removing Orthodontics Bracket—An Experimental Study Using Nano-indentation Test. Exp. Mech. 2015;55:1769–1777. doi: 10.1007/s11340-015-0087-0. DOI
Karimzadeh A., Ayatollahi M.R., Bushroa A.R. Effect of dental restorative material type and shade on characteristics of two-layer dental composite systems. Lat. Am. J. Solids Struct. 2016;13:1851–1865. doi: 10.1590/1679-78252562. DOI
Karimzadeh A., Ayatollahi M.R., Hosseinzadeh Nik T. Tribological Properties of Dental Enamel Before and After Orthodontic Bracket Bonding-Debonding by Nano-Scratch Test. J. Mech. 2019;35:279–287. doi: 10.1017/jmech.2017.101. DOI
Karimzadeh A., Ayatollahi M.R., Nikkhooyifar M., Bushroa A.R. Nanomechanical properties and wear resistance of dental restorative materials. Struct. Eng. Mech. 2017;64:819–826. doi: 10.12989/sem.2017.64.6.819. DOI
Kalachandra S., Taylor D., DePorter C., McGrath J. Polymeric materials for composite matrices in biological environments. Polymer. 1993;34:778–782. doi: 10.1016/0032-3861(93)90363-F. DOI
Gajewski V., Pfeifer C., Fróes-Salgado N., Boaro L., Braga R. Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz. Dent. J. 2012;23:508–514. doi: 10.1590/S0103-64402012000500007. PubMed DOI
Tiwari A., Polykarpov A. Photocured Materials, Volume 13 of Rsc Smart Materials, Chapter 15: Methacrylate and Epoxy Resins Photocured by Means of Visible Light-Emitting Diodes (LEDs) Royal Society of Chemistry; London, UK: 2014. p. 370.
Barszczewska-Rybarek I.M. Structure–property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent. Mater. 2009;25:1082–1089. doi: 10.1016/j.dental.2009.01.106. PubMed DOI
Floyd C.J.E., Dickens S.H. Network structure of Bis-GMA- and UDMA-based resin systems. Dent. Mater. 2006;22:1143–1149. doi: 10.1016/j.dental.2005.10.009. PubMed DOI
Barszczewska-Rybarek I., Chladek G. Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles. Int. J. Mol. Sci. 2018;19:3937. doi: 10.3390/ijms19123937. PubMed DOI PMC
Emami N., Soderholm K. Young’s modulus and degree of conversion of different combination of light-cure dental resins. Open Dent. J. 2009;3:202–207. doi: 10.2174/1874210600903010202. PubMed DOI PMC
Naumann M., Sterzenbach G., Pröschel P. Evaluation of load testing of postendodontic restorations in vitro: Linear compressive loading, gradual cycling loading and chewing simulation. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2005;74B:829–834. doi: 10.1002/jbm.b.30321. PubMed DOI
Drummond J.L. Degradation, Fatigue, and Failure of Resin Dental Composite Materials. J. Dent. Res. 2008;87:710–719. doi: 10.1177/154405910808700802. PubMed DOI PMC
Ferracane J.L., Greener E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986;20:121–131. doi: 10.1002/jbm.820200111. PubMed DOI
Magne P., Versluis A., Douglas W.H. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers. J. Prosthet. Dent. 1999;81:335–344. doi: 10.1016/S0022-3913(99)70278-7. PubMed DOI
Ogden R.W. Non-Linear Elastic Deformations. Dover Publications; New York, NY, USA: 2013.
Arruda E.M., Boyce M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 1993;41:389–412. doi: 10.1016/0022-5096(93)90013-6. DOI
Bower A.F. Applied Mechanics of Solids, Chapter 3: Constitutive Equations: Relations between Stress and Strain. CRC Press; Boca Raton, FL, USA: 2009.
Section 22.5.1 of the Abaqus Analysis User’s Guide: Hyperelastic Behavior of Rubberlike Materials. Dassault Systèmes; Providence, RI, USA: 2014. Abaqus 6.14 Online Documentation.
Ogden R.W. Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972;326:565–584. doi: 10.1098/rspa.1972.0026. DOI
Yeoh O.H. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chem. Technol. 1990;63:792–805. doi: 10.5254/1.3538289. DOI
Kilian H.G., Enderle H.F., Unseld K. The use of the van der Waals model to elucidate universal aspects of structure-property relationships in simply extended dry and swollen rubbers. Colloid Polym. Sci. 1986;264:866–876. doi: 10.1007/BF01410637. DOI
Kossa A., Berezvai S. Novel strategy for the hyperelastic parameter fitting procedure of polymer foam materials. Polym. Test. 2016;53:149–155. doi: 10.1016/j.polymertesting.2016.05.014. DOI
Shahzad M., Kamran A., Siddiqui M.Z., Farhan M. Mechanical Characterization and FE Modelling of a Hyperelastic Material. Mater. Res. 2015;18:918–924. doi: 10.1590/1516-1439.320414. DOI
Mishra M., Szlufarska I. Possibility of high-pressure transformation during nanoindentation of SiC. Acta Mater. 2009;57:6156–6165. doi: 10.1016/j.actamat.2009.08.041. DOI
Randolph L.D., Palin W.M., Bebelman S., Devaux J., Gallez B., Leloup G., Leprince J.G. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent. Mater. 2014;30:594–604. doi: 10.1016/j.dental.2014.02.023. PubMed DOI
ASTM D695-15 . Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International; West Conshohocken, PA, USA: 2015.
ISO-14577-1 . Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters. International Organization for Standardization (ISO); Geneva, Switzerland: 2002. Part 1: Test. Method.
Karimzadeh A., Ayatollahi M.R., Alizadeh M. Finite element simulation of nano-indentation experiment on aluminum 1100. Comput. Mater. Sci. 2014;81:595–600. doi: 10.1016/j.commatsci.2013.09.019. DOI
Greaves G.N., Greer A.L., Lakes R.S., Rouxel T. Poisson’s ratio and modern materials. Nat. Mater. 2011;10:823–837. doi: 10.1038/nmat3134. PubMed DOI
Mott P.H., Roland C.M. Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B. 2009;80:132104–132108. doi: 10.1103/PhysRevB.80.132104. DOI
Nitta K.-H., Yamana M. Rheology. InTech; Rijeka, Croatia: 2012. Chapter 5: Poisson’s Ratio and Mechanical Nonlinearity Under Tensile Deformation in Crystalline Polymers; pp. 113–130.
Karimzadeharani A. Investigation on Orthodontic Bond Strength Using Experimental and Numerical Methods. Iran University of Science and Technology; Tehran, Iran: 2017.
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Ng T.P., Koloor S.S.R., Djuansjah J.R.P., Abdul Kadir M.R. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Hua Y., Gu L., Watanabe H. Micromechanical analysis of nanoparticle-reinforced dental composites. Int. J. Eng. Sci. 2013;69:69–76. doi: 10.1016/j.ijengsci.2013.04.001. DOI
De Souza Venter S.A., Fávaro S.L., Radovanovic E., Girotto E.M. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid. Mat. Res. 2013;16:898–902. doi: 10.1590/S1516-14392013005000089. DOI
Hochstetter G., Jimenez A., Cano J.P., Felder E. An attempt to determine the true stress—Strain curves of amorphous polymers by nanoindentation. Tribol. Int. 2003;36:973–985. doi: 10.1016/S0301-679X(03)00107-5. DOI
Haward R.N. The derivation of a strain hardening modulus from true stress–strain curves for thermoplastics. Polymer. 1994;35:3858–3862. doi: 10.1016/0032-3861(94)90268-2. DOI