compressive behavior
Dotaz
Zobrazit nápovědu
Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
- MeSH
- biologické modely MeSH
- biomechanika MeSH
- biomedicínské inženýrství MeSH
- hlavice femuru fyziologie MeSH
- hrudní obratle fyziologie MeSH
- kosti a kostní tkáň anatomie a histologie fyziologie radiografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- modul pružnosti MeSH
- patní kost fyziologie MeSH
- pevnost v tlaku MeSH
- radius fyziologie MeSH
- regresní analýza MeSH
- rentgenová mikrotomografie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- techniky in vitro MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To evaluate and compare the viscoelastic properties of dentine and resin-based dental materials by bulk compressive test and the Burgers model. MATERIALS AND METHODS: Sound dentine, three resin composites as well as a resin-based cement were prepared into cylindrical specimens (n = 8). A bulk compressive creep test was applied with a constant load of 300 N (23.9 MPa) for 2 h, followed by another 2 h recovery. The maximum strain, creep stain, percentage of recovery and permanent set was measured using a linear variable displacement transducer. The viscoelastic properties were characterized via the Burgers model, and the instantaneous elastic, viscous as well as elastic delayed deformation were separated from the total strain. Data were analysed via ANOVA (or Welch's Test) and Tukey (or Games-Howell Test) with a significance level of 0.05. RESULTS: Sound dentine presented the lowest maximum strain, creep strain, permanent set and the highest percentage of recovery, followed by 3 resin composites with comparable parameters, while the cement showed a significantly higher maximum strain, permanent set and lower percentage of recovery (p < 0.001). The Burgers model presented acceptable fits for characterization viscoelastic processes of both dentine and resin-based dental materials. Viscous and elastic delayed strain of dentine was significantly lower than those for tested materials (p < 0.001) with the highest instantaneous elastic strain percentage. Similar viscous and delayed strain was found among the 4 resin-based materials (p > 0.05). SIGNIFICANCE: Sound dentine exhibited superior creep stability compared to resin-based dental materials. The viscous deformation in sound dentine could be ignored when loading parallel to dentine tubules.
- MeSH
- analýza zatížení zubů MeSH
- dentin MeSH
- lidé MeSH
- pružnost MeSH
- složené pryskyřice * MeSH
- testování materiálů MeSH
- zubní materiály * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We synthesized Fe foams using water suspensions of micrometric Fe2O3 powder by reducing and sintering the sublimated Fe oxide green body to Fe under 5% H2/Ar gas. The resultant Fe foam showed aligned lamellar macropores replicating the ice dendrites. The compressive behavior and deformation mechanism of the synthesized Fe foam were studied using an acoustic emission (AE) method, with which we detected sudden localized structural changes in the Fe foam material. The evolution of the deformation mechanism was elucidated using the adaptive sequential k-means (ASK) algorithm; specifically, the plastic deformation of the cell struts was followed by localized cell collapse, which eventually led to fracturing of the cell walls. For potential biomedical applications, the corrosion and biocompatibility characteristics of the two synthesized Fe foams with different porosities (50% vs. 44%) were examined and compared. Despite its larger porosity, the superior corrosion behavior of the Fe foam with 50% porosity can be attributed to its larger pore size and smaller microscopic surface area. Based on the cytotoxicity tests for the extracts of the foams, the Fe foam with 44% porosity showed better cytocompatibility than that with 50% porosity.
- MeSH
- akustika * MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- difrakce rentgenového záření MeSH
- elektrochemie metody MeSH
- fibroblasty MeSH
- koroze MeSH
- myši MeSH
- pevnost v tlaku MeSH
- poréznost MeSH
- testování materiálů MeSH
- viskoelastické látky chemie MeSH
- železité sloučeniny chemie MeSH
- železo chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Good flow and compaction properties are necessary for the manipulation of particulate material in the pharmaceutical industry. The influence of the addition of an alternative sweetener, rebaudioside A, in a concentration 0.2% w/w and 0.5% w/w on the flow, shear and compaction properties of sorbitol for direct compaction, Merisorb® 200, was investigated in this work. Rebaudioside A worsened the flow properties of sorbitol: the Hausner ratio, the compressibility index and the mass flow rate through the aperture of a model hopper. Using a Jenike shear cell revealed a significant increase in cohesion leading to the decrease of the flow function; moreover, the addition of rebaudioside A increased the total energy for compression of tablets and plasticity estimated by the force-displacement method. Finally, the tablets showed a higher tensile strength and needed longer time to disintegrate compared to the tablets made of sorbitol itself. In view of the results for the free-flowable excipient, sorbitol, the effects of stevia even for a 0.2% w/w concentration have to be carefully considered, particularly whenever used in pharmaceutical formulations of poor flow properties.
This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.
Volumetric compressibility and Poisson's ratios of fibrous soft tissues are analyzed in this paper on the basis of constitutive models and experimental data. The paper extends the previous work of Skacel and Bursa (J Mech Behav Biomed Mater, 54, pp. 316-327, 2016), dealing with incompressible behaviour of constitutive models, to the area of compressibility. Both recent approaches to structure-based constitutive modelling of anisotropic fibrous biomaterials (based on either generalized structure tensor or angular integration) are analyzed, including their compressibility-related aspects. New experimental data related to compressibility of porcine arterial layer are presented and compared with the theoretical predictions of analyzed constitutive models. The paper points out the drawbacks of recent models with distributed fibres orientation since none of the analyzed constitutive models seems to be capable to predict the experimentally observed Poisson's ratios and volume change satisfactory.
- MeSH
- arterie * MeSH
- biologické modely * MeSH
- biomechanika MeSH
- mechanický stres MeSH
- pevnost v tlaku * MeSH
- prasata MeSH
- testování materiálů * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- diosmin terapeutické užití MeSH
- kompresní obvazy využití MeSH
- lidé MeSH
- rizikové faktory MeSH
- varixy etiologie prevence a kontrola terapie MeSH
- zdravé chování MeSH
- žilní insuficience diagnóza patofyziologie terapie MeSH
- žilní trombóza diagnóza prevence a kontrola terapie MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- směrnice pro lékařskou praxi MeSH
[13] s. : il. ; 15 cm
- MeSH
- adherence pacienta MeSH
- cvičení MeSH
- kompresní obvazy MeSH
- zdravé chování MeSH
- žilní insuficience diagnóza etiologie terapie MeSH
- Publikační typ
- populární práce MeSH
- Konspekt
- Hygiena. Lidské zdraví
- NLK Obory
- angiologie
- zdravotní výchova
- NLK Publikační typ
- informační publikace