• Je něco špatně v tomto záznamu ?

The role of fabric in the large strain compressive behavior of human trabecular bone

M. Charlebois, M. Pretterklieber, PK. Zysset

. 2010 ; 132 (12) : 121006.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12026597

Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026597
003      
CZ-PrNML
005      
20160228093056.0
007      
ta
008      
120816s2010 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1115/1.4001361 $2 doi
035    __
$a (PubMed)21142320
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Charlebois, Mathieu $u Department of Mechanics, Faculty of Civil Engineering, Czech Technical University, Prague Thakurova 7, Prague 166 29, Czech Republic. mathieu.charlebois@fsv.cvut.cz
245    14
$a The role of fabric in the large strain compressive behavior of human trabecular bone / $c M. Charlebois, M. Pretterklieber, PK. Zysset
520    9_
$a Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a biomechanika $7 D001696
650    _2
$a biomedicínské inženýrství $7 D001698
650    _2
$a kosti a kostní tkáň $x anatomie a histologie $x fyziologie $x radiografie $7 D001842
650    _2
$a patní kost $x fyziologie $7 D002111
650    _2
$a pevnost v tlaku $7 D019245
650    _2
$a modul pružnosti $7 D055119
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a hlavice femuru $x fyziologie $7 D005270
650    _2
$a lidé $7 D006801
650    _2
$a zobrazování trojrozměrné $7 D021621
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a biologické modely $7 D008954
650    _2
$a radius $x fyziologie $7 D011884
650    _2
$a regresní analýza $7 D012044
650    _2
$a mechanický stres $7 D013314
650    _2
$a hrudní obratle $x fyziologie $7 D013904
650    _2
$a rentgenová mikrotomografie $7 D055114
650    _2
$a techniky in vitro $7 D066298
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pretterklieber, Michael $u Department 2, Institute of Anatomy, University of Vienna, Austria
700    1_
$a Zysset, Philippe K $u Institute for Surgical Technology and Biomechanics, University of Bern , Bern, Switzerland
773    0_
$w MED00004544 $t Journal of biomechanical engineering $x 1528-8951 $g Roč. 132, č. 12 (2010), s. 121006
856    41
$u https://pubmed.ncbi.nlm.nih.gov/21142320 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160228093105 $b ABA008
999    __
$a ok $b bmc $g 948639 $s 783943
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 132 $c 12 $d 121006 $i 1528-8951 $m Journal of biomechanical engineering $n J Biomech Eng $x MED00004544
LZP    __
$b NLK122 $a Pubmed-20120816/11/01

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...