-
Je něco špatně v tomto záznamu ?
The role of fabric in the large strain compressive behavior of human trabecular bone
M. Charlebois, M. Pretterklieber, PK. Zysset
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21142320
DOI
10.1115/1.4001361
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- biomechanika MeSH
- biomedicínské inženýrství MeSH
- hlavice femuru fyziologie MeSH
- hrudní obratle fyziologie MeSH
- kosti a kostní tkáň anatomie a histologie fyziologie radiografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- modul pružnosti MeSH
- patní kost fyziologie MeSH
- pevnost v tlaku MeSH
- radius fyziologie MeSH
- regresní analýza MeSH
- rentgenová mikrotomografie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- techniky in vitro MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
Department 2 Institute of Anatomy University of Vienna Austria
Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026597
- 003
- CZ-PrNML
- 005
- 20160228093056.0
- 007
- ta
- 008
- 120816s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1115/1.4001361 $2 doi
- 035 __
- $a (PubMed)21142320
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Charlebois, Mathieu $u Department of Mechanics, Faculty of Civil Engineering, Czech Technical University, Prague Thakurova 7, Prague 166 29, Czech Republic. mathieu.charlebois@fsv.cvut.cz
- 245 14
- $a The role of fabric in the large strain compressive behavior of human trabecular bone / $c M. Charlebois, M. Pretterklieber, PK. Zysset
- 520 9_
- $a Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains important. In particular, the ratio of the minimum versus the maximum stress, i.e., the relative amount of softening, decreases strongly with fabric, while the dissipated energy density is dominated by the volume fraction. The collected results will prove to be useful for modeling the softening and densification of the trabecular bone using the finite element method.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a biomedicínské inženýrství $7 D001698
- 650 _2
- $a kosti a kostní tkáň $x anatomie a histologie $x fyziologie $x radiografie $7 D001842
- 650 _2
- $a patní kost $x fyziologie $7 D002111
- 650 _2
- $a pevnost v tlaku $7 D019245
- 650 _2
- $a modul pružnosti $7 D055119
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hlavice femuru $x fyziologie $7 D005270
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zobrazování trojrozměrné $7 D021621
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a radius $x fyziologie $7 D011884
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a mechanický stres $7 D013314
- 650 _2
- $a hrudní obratle $x fyziologie $7 D013904
- 650 _2
- $a rentgenová mikrotomografie $7 D055114
- 650 _2
- $a techniky in vitro $7 D066298
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pretterklieber, Michael $u Department 2, Institute of Anatomy, University of Vienna, Austria
- 700 1_
- $a Zysset, Philippe K $u Institute for Surgical Technology and Biomechanics, University of Bern , Bern, Switzerland
- 773 0_
- $w MED00004544 $t Journal of biomechanical engineering $x 1528-8951 $g Roč. 132, č. 12 (2010), s. 121006
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21142320 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160228093105 $b ABA008
- 999 __
- $a ok $b bmc $g 948639 $s 783943
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 132 $c 12 $d 121006 $i 1528-8951 $m Journal of biomechanical engineering $n J Biomech Eng $x MED00004544
- LZP __
- $b NLK122 $a Pubmed-20120816/11/01