• Something wrong with this record ?

Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis

SC. Cifuentes, E. Frutos, R. Benavente, V. Lorenzo, JL. González-Carrasco,

. 2017 ; 65 (-) : 781-790. [pub] 20160921

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010975
003      
CZ-PrNML
005      
20180404142440.0
007      
ta
008      
180404s2017 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmbbm.2016.09.013 $2 doi
035    __
$a (PubMed)27776320
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Cifuentes, S C $u Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain; Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain. Electronic address: scifuent@ing.uc3m.es.
245    10
$a Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis / $c SC. Cifuentes, E. Frutos, R. Benavente, V. Lorenzo, JL. González-Carrasco,
520    9_
$a This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.
650    12
$a vstřebatelné implantáty $7 D020341
650    _2
$a modul pružnosti $7 D055119
650    _2
$a tvrdost $7 D006244
650    _2
$a hořčík $7 D008274
650    12
$a testování materiálů $7 D008422
650    _2
$a polyestery $x analýza $7 D011091
650    _2
$a polymery $x analýza $7 D011108
650    _2
$a viskozita $7 D014783
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Frutos, E $u Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6, Czech Republic. Electronic address: frutoemi@fel.cvut.cz.
700    1_
$a Benavente, R $u Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain. Electronic address: rbenavente@ictp.csic.es.
700    1_
$a Lorenzo, V $u Grupo de Investigación ''Polímeros, Caracterización y Aplicaciones'' (U.A. del ICTP-CSIC), Universidad Politécnica de Madrid, 28006 Madrid, Spain. Electronic address: vicente.lorenzo@upm.es.
700    1_
$a González-Carrasco, J L $u Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda. Gregorio del Amo 8, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina CIBER-BBN, Spain. Electronic address: jlg@cenim.csic.es.
773    0_
$w MED00166961 $t Journal of the mechanical behavior of biomedical materials $x 1878-0180 $g Roč. 65, č. - (2017), s. 781-790
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27776320 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142519 $b ABA008
999    __
$a ok $b bmc $g 1288460 $s 1007787
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 65 $c - $d 781-790 $e 20160921 $i 1878-0180 $m Journal of the mechanical behavior of biomedical materials $n J Mech Behav Biomed Mater $x MED00166961
LZP    __
$a Pubmed-20180404

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...