High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39539806
PubMed Central
PMC11555635
DOI
10.1021/acsanm.4c04676
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Nanodiamonds (NDs) containing optically active centers have gained significant relevance as the material of choice for biological, optoelectronic, and quantum applications. However, current production methods lag behind their real needs. This study introduces two CVD-based approaches for fabricating NDs with optically active silicon-vacancy (SiV) color centers: bottom-up (BU) and top-down (TD) methods. The BU approach generates nanoporous diamond films with a core-shell structure, while the TD method employs molten-salt thermal etching to create uniform porous structures from nanocrystalline diamond films. Comprehensive characterization using advanced techniques revealed distinct morphologies and optical properties for each approach. The BU method yielded higher-quality diamond phases with top-surface incorporation of SiV centers, while the TD method demonstrated efficient nondiamond phase removal. Ultrasonic disintegration of both porous films produced NDs ranging from 40 to 500 nm, with unique morphologies characteristic of each approach. Photoluminescence measurements confirmed SiV centers (738 nm) in all NDs, exhibiting sensitivity to surface terminations, particularly in BU samples. Temperature-resolved spectroscopy shows the potential of the fabricated NDs for nano thermometry over a wide range of temperatures up to 100 °C. The zero-phonon line shows 0.022 ± 0.003 nm/K sensitivity, while the line width exhibits 0.068 ± 0.004 nm/K broadening. The presented BU and TD methods offer significant advantages over existing techniques, including streamlined production processes, high-yield ND synthesis with tailored properties, and the potential for scalable, cost-effective manufacturing.
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 112 Prague 6 162 00 Czech Republic
Laboratory of Nano Optics and Cμ University of Siegen Walter Flex Str 3 Siegen 57072 Germany
National Institute of Optics Largo Enrico Fermi 6 Florence 50125 Italy
See more in PubMed
Ku Y.; Huang W.; Li X.; Wan L.; Zhang K.; Yan L.; Guo Y.; Cheng S.; Shan C. Rational Design of Diamond through Microstructure Engineering: From Synthesis to Applications. Carbon Energy 2024, 6 (7), e57010.1002/cey2.570. DOI
Fehler K. G.; Ovvyan A. P.; Antoniuk L.; Lettner N.; Gruhler N.; Davydov V. A.; Agafonov V. N.; Pernice W. H. P.; Kubanek A. Purcell-Enhanced Emission from Individual SiV – Center in Nanodiamonds Coupled to a Si 3 N 4 -Based, Photonic Crystal Cavity. Nanophotonics 2020, 9 (11), 3655–3662. 10.1515/nanoph-2020-0257. DOI
Balasubramanian G.; Lazariev A.; Arumugam S. R.; Duan D. Nitrogen-Vacancy Color Center in Diamond—Emerging Nanoscale Applications in Bioimaging and Biosensing. Curr. Opin. Chem. Biol. 2014, 20, 69–77. 10.1016/j.cbpa.2014.04.014. PubMed DOI
Neburkova J.; Vavra J.; Cigler P. Coating Nanodiamonds with Biocompatible Shells for Applications in Biology and Medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21 (1), 43–53. 10.1016/j.cossms.2016.05.008. DOI
Ekimov E. A.; Kondrin M. V. Vacancy–Impurity Centers in Diamond: Prospects for Synthesis and Applications. Phys.-Uspekhi 2017, 60 (6), 539–558. 10.3367/UFNe.2016.11.037959. DOI
Zheng J.; Lienhard B.; Doerk G.; Cotlet M.; Bersin E.; Kim H. S.; Byun Y.-C.; Nam C.-Y.; Kim J.; Black C. T.; Englund D. Top-down Fabrication of High-Uniformity Nanodiamonds by Self-Assembled Block Copolymer Masks. Sci. Rep. 2019, 9 (1), 6914.10.1038/s41598-019-43304-5. PubMed DOI PMC
Barjon J.; Rzepka E.; Jomard F.; Laroche J.-M.; Ballutaud D.; Kociniewski T.; Chevallier J. Silicon Incorporation in CVD Diamond Layers. Phys. Status Solidi A 2005, 202 (11), 2177–2181. 10.1002/pssa.200561920. DOI
Fait J.; Varga M.; Hruška K.; Kromka A.; Rezek B.; Ondič L. Spectral Tuning of Diamond Photonic Crystal Slabs by Deposition of a Thin Layer with Silicon Vacancy Centers. Nanophotonics 2021, 10 (15), 3895–3905. 10.1515/nanoph-2021-0369. DOI
Häußler S.; Thiering G.; Dietrich A.; Waasem N.; Teraji T.; Isoya J.; Iwasaki T.; Hatano M.; Jelezko F.; Gali A.; Kubanek A. Photoluminescence Excitation Spectroscopy of SiV – and GeV – Color Center in Diamond. New J. Phys. 2017, 19 (6), 063036.10.1088/1367-2630/aa73e5. DOI
Bolshakov A.; Ralchenko V.; Sedov V.; Khomich A.; Vlasov I.; Khomich A.; Trofimov N.; Krivobok V.; Nikolaev S.; Khmelnitskii R.; Saraykin V. Photoluminescence of SiV Centers in Single Crystal CVD Diamond in Situ Doped with Si from Silane: Photoluminescence of SiV Centers in Single Crystal CVD Diamond. Phys. Status Solidi A 2015, 212 (11), 2525–2532. 10.1002/pssa.201532174. DOI
Yang B.; Li J.; Guo L.; Huang N.; Liu L.; Zhai Z.; Long W.; Jiang X. Fabrication of Silicon-Vacancy Color Centers in Diamond Films: Tetramethylsilane as a New Dopant Source. CrystEngComm 2018, 20 (8), 1158–1167. 10.1039/C7CE02181J. DOI
Grudinkin S. A.; Feoktistov N. A.; Medvedev A. V.; Bogdanov K. V.; Baranov A. V.; Vul’ A. Y.; Golubev V. G. Luminescent Isolated Diamond Particles with Controllably Embedded Silicon-Vacancy Colour Centres. J. Phys. Appl. Phys. 2012, 45 (6), 062001.10.1088/0022-3727/45/6/062001. DOI
Kim H.; Kim H.; Lee J.; Lim W. C.; Eliades J. A.; Kim J.; Song J.; Suk J. Fabrication of Silicon-Vacancy Color Centers in Nanodiamonds by Using Si-Ion Implantation. J. Korean Phys. Soc. 2018, 73 (5), 661–666. 10.3938/jkps.73.661. DOI
Alkahtani M. H.; Alghannam F.; Jiang L.; Almethen A.; Rampersaud A. A.; Brick R.; Gomes C. L.; Scully M. O.; Hemmer P. R. Fluorescent Nanodiamonds: Past, Present, and Future. Nanophotonics 2018, 7 (8), 1423–1453. 10.1515/nanoph-2018-0025. DOI
Lindner S.; Bommer A.; Muzha A.; Krueger A.; Gines L.; Mandal S.; Williams O.; Londero E.; Gali A.; Becher C. Strongly Inhomogeneous Distribution of Spectral Properties of Silicon-Vacancy Color Centers in Nanodiamonds. New J. Phys. 2018, 20 (11), 115002.10.1088/1367-2630/aae93f. DOI
Bolshedvorskii S. V.; Zeleneev A. I.; Vorobyov V. V.; Soshenko V. V.; Rubinas O. R.; Zhulikov L. A.; Pivovarov P. A.; Sorokin V. N.; Smolyaninov A. N.; Kulikova L. F.; Garanina A. S.; Lyapin S. G.; Agafonov V. N.; Uzbekov R. E.; Davydov V. A.; Akimov A. V. Single Silicon Vacancy Centers in 10 Nm Diamonds for Quantum Information Applications. ACS Appl. Nano Mater. 2019, 2 (8), 4765–4772. 10.1021/acsanm.9b00580. DOI
Ekimov E. A.; Kondrin M. V.; Krivobok V. S.; Khomich A. A.; Vlasov I. I.; Khmelnitskiy R. A.; Iwasaki T.; Hatano M. Effect of Si, Ge and Sn Dopant Elements on Structure and Photoluminescence of Nano- and Microdiamonds Synthesized from Organic Compounds. Diam. Relat. Mater. 2019, 93, 75–83. 10.1016/j.diamond.2019.01.029. DOI
Jantzen U.; Kurz A. B.; Rudnicki D. S.; Schäfermeier C.; Jahnke K. D.; Andersen U. L.; Davydov V. A.; Agafonov V. N.; Kubanek A.; Rogers L. J.; Jelezko F. Nanodiamonds Carrying Silicon-Vacancy Quantum Emitters with Almost Lifetime-Limited Linewidths. New J. Phys. 2016, 18 (7), 073036.10.1088/1367-2630/18/7/073036. DOI
Makino Y.; Yoshikawa T.; Tsurui A.; Liu M.; Yamagishi G.; Nishikawa M.; Mahiko T.; Ohno M.; Ashida M.; Okuyama N. Direct Synthesis of Group IV-Vacancy Center-Containing Nanodiamonds via Detonation Process Using Aromatic Compound as Group IV Element Source. Diam. Relat. Mater. 2022, 130, 109493.10.1016/j.diamond.2022.109493. DOI
Heyer S.; Janssen W.; Turner S.; Lu Y.-G.; Yeap W. S.; Verbeeck J.; Haenen K.; Krueger A. Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano 2014, 8 (6), 5757–5764. 10.1021/nn500573x. PubMed DOI
Tallaire A.; Brinza O.; De Feudis M.; Ferrier A.; Touati N.; Binet L.; Nicolas L.; Delord T.; Hétet G.; Herzig T.; Pezzagna S.; Goldner P.; Achard J. Synthesis of Loose Nanodiamonds Containing Nitrogen-Vacancy Centers for Magnetic and Thermal Sensing. ACS Appl. Nano Mater. 2019, 2 (9), 5952–5962. 10.1021/acsanm.9b01395. DOI
De Feudis M.; Tallaire A.; Nicolas L.; Brinza O.; Goldner P.; Hétet G.; Bénédic F.; Achard J. Large-Scale Fabrication of Highly Emissive Nanodiamonds by Chemical Vapor Deposition with Controlled Doping by SiV and GeV Centers from a Solid Source. Adv. Mater. Interfaces 2020, 7 (2), 1901408.10.1002/admi.201901408. DOI
Zhang J.; Yu X.; Zhang Z.-Q.; Zhao Z.-Y. Preparation of Boron-Doped Diamond Foam Film for Supercapacitor Applications. Appl. Surf. Sci. 2020, 506, 144645.10.1016/j.apsusc.2019.144645. DOI
Miao D.; Li Z.; Chen Y.; Liu G.; Deng Z.; Yu Y.; Li S.; Zhou K.; Ma L.; Wei Q. Preparation of Macro-Porous 3D Boron-Doped Diamond Electrode with Surface Micro Structure Regulation to Enhance Electrochemical Degradation Performance. Chem. Eng. J. 2022, 429, 132366.10.1016/j.cej.2021.132366. DOI
Varga M.; Potocký Š.; Domonkos M.; Ižák T.; Babčenko O.; Kromka A. Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement. ACS Omega 2019, 4 (5), 8441–8450. 10.1021/acsomega.9b00323. PubMed DOI PMC
Gao F.; Wolfer M. T.; Nebel C. E. Highly Porous Diamond Foam as a Thin-Film Micro-Supercapacitor Material. Carbon 2014, 80, 833–840. 10.1016/j.carbon.2014.09.007. DOI
Liu F.; Deng Z.; Miao D.; Chen W.; Wang Y.; Zhou K.; Ma L.; Wei Q. A Highly Stable Microporous Boron-Doped Diamond Electrode Etched by Oxygen Plasma for Enhanced Electrochemical Ozone Generation. J. Environ. Chem. Eng. 2021, 9 (6), 106369.10.1016/j.jece.2021.106369. DOI
Shi C.; Li C.; Li M.; Li H.; Dai W.; Wu Y.; Yang B. Fabrication of Porous Boron-Doped Diamond Electrodes by Catalytic Etching under Hydrogen–Argon Plasma. Appl. Surf. Sci. 2016, 360, 315–322. 10.1016/j.apsusc.2015.11.028. DOI
Kriele A.; Williams O. A.; Wolfer M.; Hees J. J.; Smirnov W.; Nebel C. E. Formation of Nano-Pores in Nano-Crystalline Diamond Films. Chem. Phys. Lett. 2011, 507 (4–6), 253–259. 10.1016/j.cplett.2011.03.089. DOI
Pfeifer R.; Szabó O.; Potocký Š.; Lorinčík J.; Stehlík Š.; Marton M.; Vojs M.; Kromka A. Generation of Nanoporous Diamond Electrodes Fabricated by a Low-Cost Process at Moderate Temperatures. ACS Appl. Eng. Mater. 2023, 1 (5), 1446–1454. 10.1021/acsaenm.3c00125. DOI
Kromka A.; Babchenko O.; Potocky S.; Rezek B.; Sveshnikov A.; Demo P.; Izak T.; Varga M.. Diamond Nucleation and Seeding Techniques for Tissue Regeneration. In Diamond-Based Materials for Biomedical Applications; Elsevier, 2013; pp 206–255.10.1533/9780857093516.2.206. DOI
Potocký S. ˇ.; Babchenko O.; Hruška K.; Kromka A. Linear Antenna Microwave Plasma CVD Diamond Deposition at the Edge of No-Growth Region of C–H–O Ternary Diagram. Phys. Status Solidi B 2012, 249 (12), 2612–2615. 10.1002/pssb.201200124. DOI
Potocký Š.; Holovský J.; Remeš Z.; Müller M.; Kočka J.; Kromka A. Si-Related Color Centers in Nanocrystalline Diamond Thin Films: Si-Related Color Centers in Nanocrystalline Diamond Thin Films. Phys. Status Solidi B 2014, 251 (12), 2603–2606. 10.1002/pssb.201451177. DOI
Yang B.; Yu B.; Li H.; Huang N.; Liu L.; Jiang X. Enhanced and Switchable Silicon-Vacancy Photoluminescence in Air-Annealed Nanocrystalline Diamond Films. Carbon 2020, 156, 242–252. 10.1016/j.carbon.2019.09.054. DOI
Zhou D.; Eames P. Thermal Characterisation of Binary Sodium/Lithium Nitrate Salts for Latent Heat Storage at Medium Temperatures. Sol. Energy Mater. Sol. Cells 2016, 157, 1019–1025. 10.1016/j.solmat.2016.08.017. DOI
Ruiz M. L.; Lick I. D.; Ponzi M. I.; Castellón E. R.; Jiménez-López A.; Ponzi E. N. Thermal Decomposition of Supported Lithium Nitrate Catalysts. Thermochim. Acta 2010, 499 (1–2), 21–26. 10.1016/j.tca.2009.10.016. DOI
Das D.; Kandasami A.; Ramachandra Rao M. S. Realization of Highly Conducting n -Type Diamond by Phosphorus Ion Implantation. Appl. Phys. Lett. 2021, 118 (10), 102102.10.1063/5.0039909. DOI
Ferrari A. C.; Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61 (20), 14095–14107. 10.1103/PhysRevB.61.14095. DOI
Drijkoningen S.; Pobedinskas P.; Korneychuk S.; Momot A.; Balasubramaniam Y.; Van Bael M. K.; Turner S.; Verbeeck J.; Nesládek M.; Haenen K. On the Origin of Diamond Plates Deposited at Low Temperature. Cryst. Growth Des. 2017, 17 (8), 4306–4314. 10.1021/acs.cgd.7b00623. DOI
Potocký Š.; Ižák T.; Varga M.; Kromka A. Influence of Gas Chemistry on Si-V Color Centers in Diamond Films: Influence of Gas Chemistry on Si-V Color Centers in Diamond Films. Phys. Status Solidi B 2015, 252 (11), 2580–2584. 10.1002/pssb.201552222. DOI
Yang G.; Lu Y.; Wang B.; Xia Y.; Chen H.; Song H.; Yi J.; Deng L.; Wang Y.; Li H. Chemical Vapor Deposition of ⟨110⟩ Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets. Materials 2022, 15 (21), 7776.10.3390/ma15217776. PubMed DOI PMC
Rakha S. A.; Taj J.; Yu G. Ion Irradiation-Induced Modifications of Diamond Nanorods Synthesised by Microwave Plasma Chemical Vapour Deposition. J. Exp. Nanosci. 2013, 8 (4), 555–564. 10.1080/17458080.2011.572190. DOI
Becker J. N.; Neu E.. The Silicon Vacancy Center in Diamond; Elsevier, 2020; Vol. 103, pp 201–235.10.1016/bs.semsem.2020.04.001. DOI
Stehlik S.; Varga M.; Stenclova P.; Ondic L.; Ledinsky M.; Pangrac J.; Vanek O.; Lipov J.; Kromka A.; Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 Nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces 2017, 9 (44), 38842–38853. 10.1021/acsami.7b14436. PubMed DOI
Himics L.; Tóth S.; Veres M.; Koós M. Spectral Properties of the Zero-Phonon Line from Ensemble of Silicon–Vacancy Center in Nanodiamond. Opt. Quantum Electron. 2016, 48 (8), 394.10.1007/s11082-016-0663-2. DOI
Stehlik S.; Varga M.; Ledinsky M.; Jirasek V.; Artemenko A.; Kozak H.; Ondic L.; Skakalova V.; Argentero G.; Pennycook T.; Meyer J. C.; Fejfar A.; Kromka A.; Rezek B. Size and Purity Control of HPHT Nanodiamonds down to 1 Nm. J. Phys. Chem. C 2015, 119 (49), 27708–27720. 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Stehlik S.; Varga M.; Ledinsky M.; Miliaieva D.; Kozak H.; Skakalova V.; Mangler C.; Pennycook T. J.; Meyer J. C.; Kromka A.; Rezek B. High-Yield Fabrication and Properties of 1.4 Nm Nanodiamonds with Narrow Size Distribution. Sci. Rep. 2016, 6 (1), 38419.10.1038/srep38419. PubMed DOI PMC
Havlik J.; Petrakova V.; Rehor I.; Petrak V.; Gulka M.; Stursa J.; Kucka J.; Ralis J.; Rendler T.; Lee S.-Y.; Reuter R.; Wrachtrup J.; Ledvina M.; Nesladek M.; Cigler P. Boosting Nanodiamond Fluorescence: Towards Development of Brighter Probes. Nanoscale 2013, 5 (8), 3208.10.1039/c2nr32778c. PubMed DOI
Turcheniuk K.; Trecazzi C.; Deeleepojananan C.; Mochalin V. N. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater. Interfaces 2016, 8 (38), 25461–25468. 10.1021/acsami.6b08311. PubMed DOI
Ozawa M.; Inaguma M.; Takahashi M.; Kataoka F.; Krüger A.; O̅sawa E. Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. Adv. Mater. 2007, 19 (9), 1201–1206. 10.1002/adma.200601452. DOI
Merz V.; Lenhart J.; Vonhausen Y.; Ortiz-Soto M. E.; Seibel J.; Krueger A. Zwitterion-Functionalized Detonation Nanodiamond with Superior Protein Repulsion and Colloidal Stability in Physiological Media. Small 2019, 15 (48), 1901551.10.1002/smll.201901551. PubMed DOI
Yoshikawa T.; Liu M.; Chang S. L. Y.; Kuschnerus I. C.; Makino Y.; Tsurui A.; Mahiko T.; Nishikawa M. Steric Interaction of Polyglycerol-Functionalized Detonation Nanodiamonds. Langmuir 2022, 38 (2), 661–669. 10.1021/acs.langmuir.1c02283. PubMed DOI
Ondič L.; Trojánek F.; Varga M.; Fait J. Strain-Relaxed Nanocrystalline Diamond Thin Films with Silicon Vacancy Centers Using Femtosecond Laser Irradiation for Photonic Applications. ACS Appl. Nano Mater. 2023, 6 (5), 3268–3276. 10.1021/acsanm.2c04976. DOI
Alkahtani M. Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials 2023, 16 (17), 5942.10.3390/ma16175942. PubMed DOI PMC
Liu W.; Alam M. N. A.; Liu Y.; Agafonov V. N.; Qi H.; Koynov K.; Davydov V. A.; Uzbekov R.; Kaiser U.; Lasser T.; Jelezko F.; Ermakova A.; Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. Nano Lett. 2022, 22 (7), 2881–2888. 10.1021/acs.nanolett.2c00040. PubMed DOI PMC
Bézard M.; Babaze A.; Mindarava Y.; Blinder R.; Davydov V. A.; Agafonov V.; Esteban R.; Tamarat P.; Aizpurua J.; Jelezko F.; Lounis B. Giant Quantum Electrodynamic Effects on Single SiV Color Centers in Nanosized Diamonds. ACS Nano 2024, 18 (8), 6406–6412. 10.1021/acsnano.3c11739. PubMed DOI
Jahnke K. D.; Sipahigil A.; Binder J. M.; Doherty M. W.; Metsch M.; Rogers L. J.; Manson N. B.; Lukin M. D.; Jelezko F. Electron–Phonon Processes of the Silicon-Vacancy Centre in Diamond. New J. Phys. 2015, 17 (4), 043011.10.1088/1367-2630/17/4/043011. DOI
Fujiwara M.; Uchida G.; Ohki I.; Liu M.; Tsurui A.; Yoshikawa T.; Nishikawa M.; Mizuochi N. All-Optical Nanoscale Thermometry Based on Silicon-Vacancy Centers in Detonation Nanodiamonds. Carbon 2022, 198, 57–62. 10.1016/j.carbon.2022.06.076. DOI
Nguyen C. T.; Evans R. E.; Sipahigil A.; Bhaskar M. K.; Sukachev D. D.; Agafonov V. N.; Davydov V. A.; Kulikova L. F.; Jelezko F.; Lukin M. D. All-Optical Nanoscale Thermometry with Silicon-Vacancy Centers in Diamond. Appl. Phys. Lett. 2018, 112 (20), 203102.10.1063/1.5029904. DOI
Sledz F.; Piccolomo S.; Flatae A. M.; Lagomarsino S.; Rechenberg R.; Becker M. F.; Sciortino S.; Gelli N.; Khramtsov I. A.; Fedyanin D. Y.; Speranza G.; Giuntini L.; Agio M. Photoluminescence of Nitrogen-Vacancy and Silicon-Vacancy Color Centers in Phosphorus-Doped Diamond at Room and Higher Temperatures. Il Nuovo Cimento C 2021, 44 (405), 1–4. 10.1393/ncc/i2021-21106-6. DOI
Lagomarsino S.; Gorelli F.; Santoro M.; Fabbri N.; Hajeb A.; Sciortino S.; Palla L.; Czelusniak C.; Massi M.; Taccetti F.; Giuntini L.; Gelli N.; Fedyanin D. Y.; Cataliotti F. S.; Toninelli C.; Agio M. Robust Luminescence of the Silicon-Vacancy Center in Diamond at High Temperatures. AIP Adv. 2015, 5 (12), 127117.10.1063/1.4938256. DOI
Shenderova O.; Nunn N.; Oeckinghaus T.; Torelli M.; McGuire G.; Smith K.; Danilov E.; Reuter R.; Wrachtrup J.; Shames A.; Filonova D.; Kinev A.. In Commercial Quantities of Ultrasmall Fluorescent Nanodiamonds Containing Color Centers; Hasan Z. U., Hemmer P. R., Lee H., Migdall A. L., Eds.; ACS: San Francisco, California, United States, 2017; p 1011803.10.1117/12.2256800. DOI
Chang S. L. Y.; Reineck P.; Krueger A.; Mochalin V. N. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano 2022, 16 (6), 8513–8524. 10.1021/acsnano.2c00197. PubMed DOI
Ekimov E. A.; Kondrin M. V.; Lyapin S. G.; Grigoriev Yu. V.; Razgulov A. A.; Krivobok V. S.; Gierlotka S.; Stelmakh S. High-Pressure Synthesis and Optical Properties of Nanodiamonds Obtained from Halogenated Adamantanes. Diam. Relat. Mater. 2020, 103, 107718.10.1016/j.diamond.2020.107718. DOI
Ekimov E.; Shiryaev A. A.; Grigoriev Y.; Averin A.; Shagieva E.; Stehlik S.; Kondrin M. Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure. Nanomaterials 2022, 12 (3), 351.10.3390/nano12030351. PubMed DOI PMC
Li K.; Zhou Y.; Rasmita A.; Aharonovich I.; Gao W. B. Nonblinking Emitters with Nearly Lifetime-Limited Linewidths in CVD Nanodiamonds. Phys. Rev. Appl. 2016, 6 (2), 024010.10.1103/PhysRevApplied.6.024010. DOI
Bogdanov K. V.; Baranov M. A.; Feoktistov N. A.; Kaliya I. E.; Golubev V. G.; Grudinkin S. A.; Baranov A. V. Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials 2022, 15 (10), 3589.10.3390/ma15103589. PubMed DOI PMC