High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications

. 2024 Nov 08 ; 7 (21) : 24766-24777. [epub] 20241025

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39539806

Nanodiamonds (NDs) containing optically active centers have gained significant relevance as the material of choice for biological, optoelectronic, and quantum applications. However, current production methods lag behind their real needs. This study introduces two CVD-based approaches for fabricating NDs with optically active silicon-vacancy (SiV) color centers: bottom-up (BU) and top-down (TD) methods. The BU approach generates nanoporous diamond films with a core-shell structure, while the TD method employs molten-salt thermal etching to create uniform porous structures from nanocrystalline diamond films. Comprehensive characterization using advanced techniques revealed distinct morphologies and optical properties for each approach. The BU method yielded higher-quality diamond phases with top-surface incorporation of SiV centers, while the TD method demonstrated efficient nondiamond phase removal. Ultrasonic disintegration of both porous films produced NDs ranging from 40 to 500 nm, with unique morphologies characteristic of each approach. Photoluminescence measurements confirmed SiV centers (738 nm) in all NDs, exhibiting sensitivity to surface terminations, particularly in BU samples. Temperature-resolved spectroscopy shows the potential of the fabricated NDs for nano thermometry over a wide range of temperatures up to 100 °C. The zero-phonon line shows 0.022 ± 0.003 nm/K sensitivity, while the line width exhibits 0.068 ± 0.004 nm/K broadening. The presented BU and TD methods offer significant advantages over existing techniques, including streamlined production processes, high-yield ND synthesis with tailored properties, and the potential for scalable, cost-effective manufacturing.

Zobrazit více v PubMed

Ku Y.; Huang W.; Li X.; Wan L.; Zhang K.; Yan L.; Guo Y.; Cheng S.; Shan C. Rational Design of Diamond through Microstructure Engineering: From Synthesis to Applications. Carbon Energy 2024, 6 (7), e57010.1002/cey2.570. DOI

Fehler K. G.; Ovvyan A. P.; Antoniuk L.; Lettner N.; Gruhler N.; Davydov V. A.; Agafonov V. N.; Pernice W. H. P.; Kubanek A. Purcell-Enhanced Emission from Individual SiV – Center in Nanodiamonds Coupled to a Si 3 N 4 -Based, Photonic Crystal Cavity. Nanophotonics 2020, 9 (11), 3655–3662. 10.1515/nanoph-2020-0257. DOI

Balasubramanian G.; Lazariev A.; Arumugam S. R.; Duan D. Nitrogen-Vacancy Color Center in Diamond—Emerging Nanoscale Applications in Bioimaging and Biosensing. Curr. Opin. Chem. Biol. 2014, 20, 69–77. 10.1016/j.cbpa.2014.04.014. PubMed DOI

Neburkova J.; Vavra J.; Cigler P. Coating Nanodiamonds with Biocompatible Shells for Applications in Biology and Medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21 (1), 43–53. 10.1016/j.cossms.2016.05.008. DOI

Ekimov E. A.; Kondrin M. V. Vacancy–Impurity Centers in Diamond: Prospects for Synthesis and Applications. Phys.-Uspekhi 2017, 60 (6), 539–558. 10.3367/UFNe.2016.11.037959. DOI

Zheng J.; Lienhard B.; Doerk G.; Cotlet M.; Bersin E.; Kim H. S.; Byun Y.-C.; Nam C.-Y.; Kim J.; Black C. T.; Englund D. Top-down Fabrication of High-Uniformity Nanodiamonds by Self-Assembled Block Copolymer Masks. Sci. Rep. 2019, 9 (1), 6914.10.1038/s41598-019-43304-5. PubMed DOI PMC

Barjon J.; Rzepka E.; Jomard F.; Laroche J.-M.; Ballutaud D.; Kociniewski T.; Chevallier J. Silicon Incorporation in CVD Diamond Layers. Phys. Status Solidi A 2005, 202 (11), 2177–2181. 10.1002/pssa.200561920. DOI

Fait J.; Varga M.; Hruška K.; Kromka A.; Rezek B.; Ondič L. Spectral Tuning of Diamond Photonic Crystal Slabs by Deposition of a Thin Layer with Silicon Vacancy Centers. Nanophotonics 2021, 10 (15), 3895–3905. 10.1515/nanoph-2021-0369. DOI

Häußler S.; Thiering G.; Dietrich A.; Waasem N.; Teraji T.; Isoya J.; Iwasaki T.; Hatano M.; Jelezko F.; Gali A.; Kubanek A. Photoluminescence Excitation Spectroscopy of SiV – and GeV – Color Center in Diamond. New J. Phys. 2017, 19 (6), 063036.10.1088/1367-2630/aa73e5. DOI

Bolshakov A.; Ralchenko V.; Sedov V.; Khomich A.; Vlasov I.; Khomich A.; Trofimov N.; Krivobok V.; Nikolaev S.; Khmelnitskii R.; Saraykin V. Photoluminescence of SiV Centers in Single Crystal CVD Diamond in Situ Doped with Si from Silane: Photoluminescence of SiV Centers in Single Crystal CVD Diamond. Phys. Status Solidi A 2015, 212 (11), 2525–2532. 10.1002/pssa.201532174. DOI

Yang B.; Li J.; Guo L.; Huang N.; Liu L.; Zhai Z.; Long W.; Jiang X. Fabrication of Silicon-Vacancy Color Centers in Diamond Films: Tetramethylsilane as a New Dopant Source. CrystEngComm 2018, 20 (8), 1158–1167. 10.1039/C7CE02181J. DOI

Grudinkin S. A.; Feoktistov N. A.; Medvedev A. V.; Bogdanov K. V.; Baranov A. V.; Vul’ A. Y.; Golubev V. G. Luminescent Isolated Diamond Particles with Controllably Embedded Silicon-Vacancy Colour Centres. J. Phys. Appl. Phys. 2012, 45 (6), 062001.10.1088/0022-3727/45/6/062001. DOI

Kim H.; Kim H.; Lee J.; Lim W. C.; Eliades J. A.; Kim J.; Song J.; Suk J. Fabrication of Silicon-Vacancy Color Centers in Nanodiamonds by Using Si-Ion Implantation. J. Korean Phys. Soc. 2018, 73 (5), 661–666. 10.3938/jkps.73.661. DOI

Alkahtani M. H.; Alghannam F.; Jiang L.; Almethen A.; Rampersaud A. A.; Brick R.; Gomes C. L.; Scully M. O.; Hemmer P. R. Fluorescent Nanodiamonds: Past, Present, and Future. Nanophotonics 2018, 7 (8), 1423–1453. 10.1515/nanoph-2018-0025. DOI

Lindner S.; Bommer A.; Muzha A.; Krueger A.; Gines L.; Mandal S.; Williams O.; Londero E.; Gali A.; Becher C. Strongly Inhomogeneous Distribution of Spectral Properties of Silicon-Vacancy Color Centers in Nanodiamonds. New J. Phys. 2018, 20 (11), 115002.10.1088/1367-2630/aae93f. DOI

Bolshedvorskii S. V.; Zeleneev A. I.; Vorobyov V. V.; Soshenko V. V.; Rubinas O. R.; Zhulikov L. A.; Pivovarov P. A.; Sorokin V. N.; Smolyaninov A. N.; Kulikova L. F.; Garanina A. S.; Lyapin S. G.; Agafonov V. N.; Uzbekov R. E.; Davydov V. A.; Akimov A. V. Single Silicon Vacancy Centers in 10 Nm Diamonds for Quantum Information Applications. ACS Appl. Nano Mater. 2019, 2 (8), 4765–4772. 10.1021/acsanm.9b00580. DOI

Ekimov E. A.; Kondrin M. V.; Krivobok V. S.; Khomich A. A.; Vlasov I. I.; Khmelnitskiy R. A.; Iwasaki T.; Hatano M. Effect of Si, Ge and Sn Dopant Elements on Structure and Photoluminescence of Nano- and Microdiamonds Synthesized from Organic Compounds. Diam. Relat. Mater. 2019, 93, 75–83. 10.1016/j.diamond.2019.01.029. DOI

Jantzen U.; Kurz A. B.; Rudnicki D. S.; Schäfermeier C.; Jahnke K. D.; Andersen U. L.; Davydov V. A.; Agafonov V. N.; Kubanek A.; Rogers L. J.; Jelezko F. Nanodiamonds Carrying Silicon-Vacancy Quantum Emitters with Almost Lifetime-Limited Linewidths. New J. Phys. 2016, 18 (7), 073036.10.1088/1367-2630/18/7/073036. DOI

Makino Y.; Yoshikawa T.; Tsurui A.; Liu M.; Yamagishi G.; Nishikawa M.; Mahiko T.; Ohno M.; Ashida M.; Okuyama N. Direct Synthesis of Group IV-Vacancy Center-Containing Nanodiamonds via Detonation Process Using Aromatic Compound as Group IV Element Source. Diam. Relat. Mater. 2022, 130, 109493.10.1016/j.diamond.2022.109493. DOI

Heyer S.; Janssen W.; Turner S.; Lu Y.-G.; Yeap W. S.; Verbeeck J.; Haenen K.; Krueger A. Toward Deep Blue Nano Hope Diamonds: Heavily Boron-Doped Diamond Nanoparticles. ACS Nano 2014, 8 (6), 5757–5764. 10.1021/nn500573x. PubMed DOI

Tallaire A.; Brinza O.; De Feudis M.; Ferrier A.; Touati N.; Binet L.; Nicolas L.; Delord T.; Hétet G.; Herzig T.; Pezzagna S.; Goldner P.; Achard J. Synthesis of Loose Nanodiamonds Containing Nitrogen-Vacancy Centers for Magnetic and Thermal Sensing. ACS Appl. Nano Mater. 2019, 2 (9), 5952–5962. 10.1021/acsanm.9b01395. DOI

De Feudis M.; Tallaire A.; Nicolas L.; Brinza O.; Goldner P.; Hétet G.; Bénédic F.; Achard J. Large-Scale Fabrication of Highly Emissive Nanodiamonds by Chemical Vapor Deposition with Controlled Doping by SiV and GeV Centers from a Solid Source. Adv. Mater. Interfaces 2020, 7 (2), 1901408.10.1002/admi.201901408. DOI

Zhang J.; Yu X.; Zhang Z.-Q.; Zhao Z.-Y. Preparation of Boron-Doped Diamond Foam Film for Supercapacitor Applications. Appl. Surf. Sci. 2020, 506, 144645.10.1016/j.apsusc.2019.144645. DOI

Miao D.; Li Z.; Chen Y.; Liu G.; Deng Z.; Yu Y.; Li S.; Zhou K.; Ma L.; Wei Q. Preparation of Macro-Porous 3D Boron-Doped Diamond Electrode with Surface Micro Structure Regulation to Enhance Electrochemical Degradation Performance. Chem. Eng. J. 2022, 429, 132366.10.1016/j.cej.2021.132366. DOI

Varga M.; Potocký Š.; Domonkos M.; Ižák T.; Babčenko O.; Kromka A. Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement. ACS Omega 2019, 4 (5), 8441–8450. 10.1021/acsomega.9b00323. PubMed DOI PMC

Gao F.; Wolfer M. T.; Nebel C. E. Highly Porous Diamond Foam as a Thin-Film Micro-Supercapacitor Material. Carbon 2014, 80, 833–840. 10.1016/j.carbon.2014.09.007. DOI

Liu F.; Deng Z.; Miao D.; Chen W.; Wang Y.; Zhou K.; Ma L.; Wei Q. A Highly Stable Microporous Boron-Doped Diamond Electrode Etched by Oxygen Plasma for Enhanced Electrochemical Ozone Generation. J. Environ. Chem. Eng. 2021, 9 (6), 106369.10.1016/j.jece.2021.106369. DOI

Shi C.; Li C.; Li M.; Li H.; Dai W.; Wu Y.; Yang B. Fabrication of Porous Boron-Doped Diamond Electrodes by Catalytic Etching under Hydrogen–Argon Plasma. Appl. Surf. Sci. 2016, 360, 315–322. 10.1016/j.apsusc.2015.11.028. DOI

Kriele A.; Williams O. A.; Wolfer M.; Hees J. J.; Smirnov W.; Nebel C. E. Formation of Nano-Pores in Nano-Crystalline Diamond Films. Chem. Phys. Lett. 2011, 507 (4–6), 253–259. 10.1016/j.cplett.2011.03.089. DOI

Pfeifer R.; Szabó O.; Potocký Š.; Lorinčík J.; Stehlík Š.; Marton M.; Vojs M.; Kromka A. Generation of Nanoporous Diamond Electrodes Fabricated by a Low-Cost Process at Moderate Temperatures. ACS Appl. Eng. Mater. 2023, 1 (5), 1446–1454. 10.1021/acsaenm.3c00125. DOI

Kromka A.; Babchenko O.; Potocky S.; Rezek B.; Sveshnikov A.; Demo P.; Izak T.; Varga M.. Diamond Nucleation and Seeding Techniques for Tissue Regeneration. In Diamond-Based Materials for Biomedical Applications; Elsevier, 2013; pp 206–255.10.1533/9780857093516.2.206. DOI

Potocký S. ˇ.; Babchenko O.; Hruška K.; Kromka A. Linear Antenna Microwave Plasma CVD Diamond Deposition at the Edge of No-Growth Region of C–H–O Ternary Diagram. Phys. Status Solidi B 2012, 249 (12), 2612–2615. 10.1002/pssb.201200124. DOI

Potocký Š.; Holovský J.; Remeš Z.; Müller M.; Kočka J.; Kromka A. Si-Related Color Centers in Nanocrystalline Diamond Thin Films: Si-Related Color Centers in Nanocrystalline Diamond Thin Films. Phys. Status Solidi B 2014, 251 (12), 2603–2606. 10.1002/pssb.201451177. DOI

Yang B.; Yu B.; Li H.; Huang N.; Liu L.; Jiang X. Enhanced and Switchable Silicon-Vacancy Photoluminescence in Air-Annealed Nanocrystalline Diamond Films. Carbon 2020, 156, 242–252. 10.1016/j.carbon.2019.09.054. DOI

Zhou D.; Eames P. Thermal Characterisation of Binary Sodium/Lithium Nitrate Salts for Latent Heat Storage at Medium Temperatures. Sol. Energy Mater. Sol. Cells 2016, 157, 1019–1025. 10.1016/j.solmat.2016.08.017. DOI

Ruiz M. L.; Lick I. D.; Ponzi M. I.; Castellón E. R.; Jiménez-López A.; Ponzi E. N. Thermal Decomposition of Supported Lithium Nitrate Catalysts. Thermochim. Acta 2010, 499 (1–2), 21–26. 10.1016/j.tca.2009.10.016. DOI

Das D.; Kandasami A.; Ramachandra Rao M. S. Realization of Highly Conducting n -Type Diamond by Phosphorus Ion Implantation. Appl. Phys. Lett. 2021, 118 (10), 102102.10.1063/5.0039909. DOI

Ferrari A. C.; Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61 (20), 14095–14107. 10.1103/PhysRevB.61.14095. DOI

Drijkoningen S.; Pobedinskas P.; Korneychuk S.; Momot A.; Balasubramaniam Y.; Van Bael M. K.; Turner S.; Verbeeck J.; Nesládek M.; Haenen K. On the Origin of Diamond Plates Deposited at Low Temperature. Cryst. Growth Des. 2017, 17 (8), 4306–4314. 10.1021/acs.cgd.7b00623. DOI

Potocký Š.; Ižák T.; Varga M.; Kromka A. Influence of Gas Chemistry on Si-V Color Centers in Diamond Films: Influence of Gas Chemistry on Si-V Color Centers in Diamond Films. Phys. Status Solidi B 2015, 252 (11), 2580–2584. 10.1002/pssb.201552222. DOI

Yang G.; Lu Y.; Wang B.; Xia Y.; Chen H.; Song H.; Yi J.; Deng L.; Wang Y.; Li H. Chemical Vapor Deposition of ⟨110⟩ Textured Diamond Film through Pre-Seeding by Diamond Nano-Sheets. Materials 2022, 15 (21), 7776.10.3390/ma15217776. PubMed DOI PMC

Rakha S. A.; Taj J.; Yu G. Ion Irradiation-Induced Modifications of Diamond Nanorods Synthesised by Microwave Plasma Chemical Vapour Deposition. J. Exp. Nanosci. 2013, 8 (4), 555–564. 10.1080/17458080.2011.572190. DOI

Becker J. N.; Neu E.. The Silicon Vacancy Center in Diamond; Elsevier, 2020; Vol. 103, pp 201–235.10.1016/bs.semsem.2020.04.001. DOI

Stehlik S.; Varga M.; Stenclova P.; Ondic L.; Ledinsky M.; Pangrac J.; Vanek O.; Lipov J.; Kromka A.; Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 Nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces 2017, 9 (44), 38842–38853. 10.1021/acsami.7b14436. PubMed DOI

Himics L.; Tóth S.; Veres M.; Koós M. Spectral Properties of the Zero-Phonon Line from Ensemble of Silicon–Vacancy Center in Nanodiamond. Opt. Quantum Electron. 2016, 48 (8), 394.10.1007/s11082-016-0663-2. DOI

Stehlik S.; Varga M.; Ledinsky M.; Jirasek V.; Artemenko A.; Kozak H.; Ondic L.; Skakalova V.; Argentero G.; Pennycook T.; Meyer J. C.; Fejfar A.; Kromka A.; Rezek B. Size and Purity Control of HPHT Nanodiamonds down to 1 Nm. J. Phys. Chem. C 2015, 119 (49), 27708–27720. 10.1021/acs.jpcc.5b05259. PubMed DOI PMC

Stehlik S.; Varga M.; Ledinsky M.; Miliaieva D.; Kozak H.; Skakalova V.; Mangler C.; Pennycook T. J.; Meyer J. C.; Kromka A.; Rezek B. High-Yield Fabrication and Properties of 1.4 Nm Nanodiamonds with Narrow Size Distribution. Sci. Rep. 2016, 6 (1), 38419.10.1038/srep38419. PubMed DOI PMC

Havlik J.; Petrakova V.; Rehor I.; Petrak V.; Gulka M.; Stursa J.; Kucka J.; Ralis J.; Rendler T.; Lee S.-Y.; Reuter R.; Wrachtrup J.; Ledvina M.; Nesladek M.; Cigler P. Boosting Nanodiamond Fluorescence: Towards Development of Brighter Probes. Nanoscale 2013, 5 (8), 3208.10.1039/c2nr32778c. PubMed DOI

Turcheniuk K.; Trecazzi C.; Deeleepojananan C.; Mochalin V. N. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater. Interfaces 2016, 8 (38), 25461–25468. 10.1021/acsami.6b08311. PubMed DOI

Ozawa M.; Inaguma M.; Takahashi M.; Kataoka F.; Krüger A.; O̅sawa E. Preparation and Behavior of Brownish, Clear Nanodiamond Colloids. Adv. Mater. 2007, 19 (9), 1201–1206. 10.1002/adma.200601452. DOI

Merz V.; Lenhart J.; Vonhausen Y.; Ortiz-Soto M. E.; Seibel J.; Krueger A. Zwitterion-Functionalized Detonation Nanodiamond with Superior Protein Repulsion and Colloidal Stability in Physiological Media. Small 2019, 15 (48), 1901551.10.1002/smll.201901551. PubMed DOI

Yoshikawa T.; Liu M.; Chang S. L. Y.; Kuschnerus I. C.; Makino Y.; Tsurui A.; Mahiko T.; Nishikawa M. Steric Interaction of Polyglycerol-Functionalized Detonation Nanodiamonds. Langmuir 2022, 38 (2), 661–669. 10.1021/acs.langmuir.1c02283. PubMed DOI

Ondič L.; Trojánek F.; Varga M.; Fait J. Strain-Relaxed Nanocrystalline Diamond Thin Films with Silicon Vacancy Centers Using Femtosecond Laser Irradiation for Photonic Applications. ACS Appl. Nano Mater. 2023, 6 (5), 3268–3276. 10.1021/acsanm.2c04976. DOI

Alkahtani M. Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing. Materials 2023, 16 (17), 5942.10.3390/ma16175942. PubMed DOI PMC

Liu W.; Alam M. N. A.; Liu Y.; Agafonov V. N.; Qi H.; Koynov K.; Davydov V. A.; Uzbekov R.; Kaiser U.; Lasser T.; Jelezko F.; Ermakova A.; Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. Nano Lett. 2022, 22 (7), 2881–2888. 10.1021/acs.nanolett.2c00040. PubMed DOI PMC

Bézard M.; Babaze A.; Mindarava Y.; Blinder R.; Davydov V. A.; Agafonov V.; Esteban R.; Tamarat P.; Aizpurua J.; Jelezko F.; Lounis B. Giant Quantum Electrodynamic Effects on Single SiV Color Centers in Nanosized Diamonds. ACS Nano 2024, 18 (8), 6406–6412. 10.1021/acsnano.3c11739. PubMed DOI

Jahnke K. D.; Sipahigil A.; Binder J. M.; Doherty M. W.; Metsch M.; Rogers L. J.; Manson N. B.; Lukin M. D.; Jelezko F. Electron–Phonon Processes of the Silicon-Vacancy Centre in Diamond. New J. Phys. 2015, 17 (4), 043011.10.1088/1367-2630/17/4/043011. DOI

Fujiwara M.; Uchida G.; Ohki I.; Liu M.; Tsurui A.; Yoshikawa T.; Nishikawa M.; Mizuochi N. All-Optical Nanoscale Thermometry Based on Silicon-Vacancy Centers in Detonation Nanodiamonds. Carbon 2022, 198, 57–62. 10.1016/j.carbon.2022.06.076. DOI

Nguyen C. T.; Evans R. E.; Sipahigil A.; Bhaskar M. K.; Sukachev D. D.; Agafonov V. N.; Davydov V. A.; Kulikova L. F.; Jelezko F.; Lukin M. D. All-Optical Nanoscale Thermometry with Silicon-Vacancy Centers in Diamond. Appl. Phys. Lett. 2018, 112 (20), 203102.10.1063/1.5029904. DOI

Sledz F.; Piccolomo S.; Flatae A. M.; Lagomarsino S.; Rechenberg R.; Becker M. F.; Sciortino S.; Gelli N.; Khramtsov I. A.; Fedyanin D. Y.; Speranza G.; Giuntini L.; Agio M. Photoluminescence of Nitrogen-Vacancy and Silicon-Vacancy Color Centers in Phosphorus-Doped Diamond at Room and Higher Temperatures. Il Nuovo Cimento C 2021, 44 (405), 1–4. 10.1393/ncc/i2021-21106-6. DOI

Lagomarsino S.; Gorelli F.; Santoro M.; Fabbri N.; Hajeb A.; Sciortino S.; Palla L.; Czelusniak C.; Massi M.; Taccetti F.; Giuntini L.; Gelli N.; Fedyanin D. Y.; Cataliotti F. S.; Toninelli C.; Agio M. Robust Luminescence of the Silicon-Vacancy Center in Diamond at High Temperatures. AIP Adv. 2015, 5 (12), 127117.10.1063/1.4938256. DOI

Shenderova O.; Nunn N.; Oeckinghaus T.; Torelli M.; McGuire G.; Smith K.; Danilov E.; Reuter R.; Wrachtrup J.; Shames A.; Filonova D.; Kinev A.. In Commercial Quantities of Ultrasmall Fluorescent Nanodiamonds Containing Color Centers; Hasan Z. U., Hemmer P. R., Lee H., Migdall A. L., Eds.; ACS: San Francisco, California, United States, 2017; p 1011803.10.1117/12.2256800. DOI

Chang S. L. Y.; Reineck P.; Krueger A.; Mochalin V. N. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano 2022, 16 (6), 8513–8524. 10.1021/acsnano.2c00197. PubMed DOI

Ekimov E. A.; Kondrin M. V.; Lyapin S. G.; Grigoriev Yu. V.; Razgulov A. A.; Krivobok V. S.; Gierlotka S.; Stelmakh S. High-Pressure Synthesis and Optical Properties of Nanodiamonds Obtained from Halogenated Adamantanes. Diam. Relat. Mater. 2020, 103, 107718.10.1016/j.diamond.2020.107718. DOI

Ekimov E.; Shiryaev A. A.; Grigoriev Y.; Averin A.; Shagieva E.; Stehlik S.; Kondrin M. Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure. Nanomaterials 2022, 12 (3), 351.10.3390/nano12030351. PubMed DOI PMC

Li K.; Zhou Y.; Rasmita A.; Aharonovich I.; Gao W. B. Nonblinking Emitters with Nearly Lifetime-Limited Linewidths in CVD Nanodiamonds. Phys. Rev. Appl. 2016, 6 (2), 024010.10.1103/PhysRevApplied.6.024010. DOI

Bogdanov K. V.; Baranov M. A.; Feoktistov N. A.; Kaliya I. E.; Golubev V. G.; Grudinkin S. A.; Baranov A. V. Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials 2022, 15 (10), 3589.10.3390/ma15103589. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...