Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31459933
PubMed Central
PMC6648511
DOI
10.1021/acsomega.9b00323
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Synthetic diamond films are routinely grown using chemical vapor deposition (CVD) techniques. Due to their extraordinary combination of intrinsic properties, they are used as the functional layers in various bio-optoelectronic devices. It is a challenge to grow the dimensional layers or porous structures that are required. This study reviews the fabrication of various porous diamond-based structures using linear antenna microwave plasma (LAMWP) chemical vapor deposition (CVD), a low-cost technology for growing diamond films over a large area (>1 m2) at low pressure (<100 Pa) and at low temperature (even at 350 °C). From a technological point of view, two different approaches, i.e., templated diamond growth using three different prestructured (macro-, micro-, and nanosized) porous substrates and direct bottom-up growth of ultra-nanoporous diamond (block-stone and dendritelike) films, are successfully employed to form diamond-based structures with controlled porosity and an enhanced surface area. As a bottom-up strategy, the LAMWP CVD system allows diamond growth at as high as 80% CO2 in the CH4/CO2/H2 gas mixture. In summary, the low-pressure and cold plasma conditions in the LAMWP system facilitate the growth on three-dimensionally prestructured substrates of various materials that naturally form porous self-standing diamond structures.
Zobrazit více v PubMed
May P. W. Diamond thin films: a 21st-century material. Philos. Trans. R. Soc., A 2000, 358, 473–495. 10.1098/rsta.2000.0542. DOI
Gicquel A.; Hassouni K.; Silva F.; Achard J. CVD diamond films: from growth to applications. Curr. Appl. Phys. 2001, 1, 479–496. 10.1016/S1567-1739(01)00061-X. DOI
Nebel C. E.; Rezek B.; Shin D.; Uetsuka H.; Yang N. Diamond for bio-sensor applications. J. Phys. D: Appl. Phys. 2007, 40, 6443–6466. 10.1088/0022-3727/40/20/S21. DOI
Liu H.; Wang C.; Gao C.; Han Y.; Luo J.; Zou G.; Wen C. New insights into selected-area deposition of diamond films by means of selective seeding. J. Phys.: Condens. Matter 2002, 14, 10973–10977. 10.1088/0953-8984/14/44/412. DOI
Huff M. A.; Aidala D. A.; Butler J. E. MEMS applications using diamond thin films. Solid State Technol. 2006, 49, 45–46.
Kromka A.; Babchenko O.; Rezek B.; Ledinsky M.; Hruska K.; Potmesil J.; Vanecek M. Simplified procedure for patterned growth of nanocrystalline diamond micro-structures. Thin Solid Films 2009, 518, 343–347. 10.1016/j.tsf.2009.06.014. DOI
Gavrilov S. A.; Dzbanovsky N. N.; Il’ichev É. A.; Minakov P. V.; Poltoratsky É. A.; Rychkov G. S.; Suetin N. V. Electron flow enhancement with a diamond membrane. Tech. Phys. 2004, 49, 108–113. 10.1134/1.1642688. DOI
Davydova M.; Kromka A.; Rezek B.; Babchenko O.; Stuchlik M.; Hruska K. Fabrication of diamond nanorods for gas sensing applications. Appl. Surf. Sci. 2010, 256, 5602–5605. 10.1016/j.apsusc.2010.03.034. DOI
Yang N.; Uetsuka H.; Osawa E.; Nebel C. E. Vertically Aligned Diamond Nanowires for DNA Sensing. Angew. Chem., Int. Ed. 2008, 47, 5183–5185. 10.1002/anie.200801706. PubMed DOI
Kondo T.; Lee S.; Honda K.; Kawai T. Conductive diamond hollow fiber membranes. Electrochem. Commun. 2009, 11, 1688–1691. 10.1016/j.elecom.2009.06.027. DOI
Mehedi H.; Arnault J.-C.; Eon D.; Hébert C.; Carole D.; Omnes F.; Gheeraert E. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores. Carbon 2013, 59, 448–456. 10.1016/j.carbon.2013.03.038. DOI
Matsumoto H.; Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes 2011, 1, 249–264. 10.3390/membranes1030249. PubMed DOI PMC
Hébert C.; Scorsone E.; Bendali A.; Kiran R.; Cottance M.; Girard H. A.; Degardin J.; Dubus E.; Lissorgues G.; Rousseau L.; Mailley P.; Picaud S.; Bergonzo P. Boron doped diamond biotechnology: from sensors to neurointerfaces. Faraday Discuss. 2014, 172, 47–59. 10.1039/C4FD00040D. PubMed DOI
Siuzdak K.; Bogdanowicz R. Nano-engineered Diamond-based Materials for Supercapacitor Electrodes: A Review. Energy Technol. 2018, 6, 223–237. 10.1002/ente.201700345. DOI
Yang N.; Foord J. S.; Jiang X. Diamond electrochemistry at the nanoscale: A review. Carbon 2016, 99, 90–110. 10.1016/j.carbon.2015.11.061. DOI
Kriele A.; Williams O. A.; Wolfer M.; Hees J. J.; Smirnov W.; Nebel C. E. Formation of nano-pores in nano-crystalline diamond films. Chem. Phys. Lett. 2011, 507, 253–259. 10.1016/j.cplett.2011.03.089. DOI
Aramesh M.; Fox K.; Lau D. W. M.; Fang J.; Ken Ostrikov K.; Prawer S.; Cervenka J. Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon 2014, 75, 452–464. 10.1016/j.carbon.2014.04.025. DOI
Smirnov W.; Hees J. J.; Brink D.; Müller-Sebert W.; Kriele A.; Williams O. A.; Nebel C. E. Anisotropic etching of diamond by molten Ni particles. Appl. Phys. Lett. 2010, 97, 07311710.1063/1.3480602. DOI
Potocký Š.; Ižák T.; Rezek B.; Tesárek P.; Kromka A. Transformation of polymer composite nanofibers to diamond fibers and films by microwave plasma-enhanced CVD process. Appl. Surf. Sci. 2014, 312, 188–191. 10.1016/j.apsusc.2014.05.119. DOI
Scorsone E.; Saada S.; Arnault J. C.; Bergonzo P. Enhanced control of diamond nanoparticle seeding using a polymer matrix. J. Appl. Phys. 2009, 106, 01490810.1063/1.3153118. DOI
Hébert C.; Scorsone E.; Mermoux M.; Bergonzo P. Porous diamond with high electrochemical performance. Carbon 2015, 90, 102–109. 10.1016/j.carbon.2015.04.016. DOI
Suo N.; Huang H.; Wu A.; Cao G.; Hou X.; Zhang G. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution. Appl. Surf. Sci. 2018, 439, 329–335. 10.1016/j.apsusc.2017.12.198. DOI
Yang K.-H.; Nguyen A. K.; Goering P. L.; Sumant A. V.; Narayan R. J. Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment. Interface Focus 2018, 8, 2017006310.1098/rsfs.2017.0063. PubMed DOI PMC
Varga M.; Vretenar V.; Izak T.; Skakalova V.; Kromka A. Carbon nanotubes overgrown and ingrown with nanocrystalline diamond deposited by different CVD plasma systems. Phys. Status Solidi B 2014, 251, 2413–2419. 10.1002/pssb.201451176. DOI
Marton M.; Vojs M.; Kotlár M.; Michniak P.; Vančo L’.; Veselý M.; Redhammer R. Deposition of boron doped diamond and carbon nanomaterials on graphite foam electrodes. Appl. Surf. Sci. 2014, 312, 139–144. 10.1016/j.apsusc.2014.05.199. DOI
Zanin H.; May P. W.; Fermin D. J.; Plana D.; Vieira S. M. C.; Milne W. I.; Corat E. J. Porous Boron-Doped Diamond/Carbon Nanotube Electrodes. ACS Appl. Mater. Interfaces 2014, 6, 990–995. 10.1021/am4044344. PubMed DOI
Varga M.; Stehlik S.; Kaman O.; Izak T.; Domonkos M.; Lee D. S.; Kromka A. Templated diamond growth on porous carbon foam decorated with poly(vinyl alcohol)-nanodiamond composite. Carbon 2017, 119, 124–132. 10.1016/j.carbon.2017.04.022. DOI
Silva A. A.; Pinheiro R. A.; do Amaral Razzino C.; Trava-Airoldi V. J.; Corat E. J. Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diamond Relat. Mater. 2017, 75, 116–122. 10.1016/j.diamond.2017.02.017. DOI
Gao F.; Wolfer M. T.; Nebel C. E. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 2014, 80, 833–840. 10.1016/j.carbon.2014.09.007. DOI
Ruffinatto S.; Girard H. A.; Becher F.; Arnault J.-C.; Tromson D.; Bergonzo P. Diamond porous membranes: A material toward analytical chemistry. Diamond Relat. Mater. 2015, 55, 123–130. 10.1016/j.diamond.2015.03.008. DOI
Petrák V.; Vlčková Živcová Z.; Krýsová H.; Frank O.; Zukal A.; Klimša L.; Kopeček J.; Taylor A.; Kavan L.; Mortet V. Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 2017, 114, 457–464. 10.1016/j.carbon.2016.12.012. DOI
Gao F.; Nebel C. E. Diamond-Based Supercapacitors: Realization and Properties. ACS Appl. Mater. Interfaces 2015, 8, 28244–28254. 10.1021/acsami.5b07027. PubMed DOI
Kromka A.; Babchenko O.; Kozak H.; Hruska K.; Rezek B.; Ledinsky M.; Potmesil J.; Michalka M.; Vanecek M. Seeding of polymer substrates for nanocrystalline diamond film growth. Diamond Relat. Mater. 2009, 18, 734–739. 10.1016/j.diamond.2009.01.023. DOI
Varga M.; Potocky S.; Tesarek P.; Babchenko O.; Davydova M.; Kromka A. Diamond growth on copper rods from polymer composite nanofibres. Appl. Surf. Sci. 2014, 312, 220–225. 10.1016/j.apsusc.2014.05.083. DOI
Kato H.; Hees J.; Hoffmann R.; Wolfer M.; Yang N.; Yamasaki S.; Nebel C. E. Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 2013, 33, 88–91. 10.1016/j.elecom.2013.04.028. DOI
Alexeev A. M.; Ismagilov R. R.; Ashkinazi E. E.; Orekhov A. S.; Malykhin S. A.; Obraztsov A. N. Diamond platelets produced by chemical vapor deposition. Diamond Relat. Mater. 2016, 65, 13–16. 10.1016/j.diamond.2015.12.019. DOI
Drijkoningen S.; Pobedinskas P.; Korneychuk S.; Momot A.; Balasubramaniam Y.; Van Bael M. K.; Turner S.; Verbeeck J.; Nesládek M.; Haenen K. On the Origin of Diamond Plates Deposited at Low Temperature. Cryst. Growth Des. 2017, 17, 4306–4314. 10.1021/acs.cgd.7b00623. DOI
Schlemm H.; Fritzsche M.; Roth D. Linear radio frequency plasma sources for large scale industrial applications in photovoltaics. Surf. Coat. Technol. 2005, 200, 958–961. 10.1016/j.surfcoat.2005.05.020. DOI
Kromka A.; Babchenko O.; Izak T.; Hruska K.; Rezek B. Linear antenna microwave plasma CVD deposition of diamond films over large areas. Vacuum 2012, 86, 776–779. 10.1016/j.vacuum.2011.07.008. DOI
Obrusník A.; Bonaventura Z. Studying a low-pressure microwave coaxial discharge in hydrogen using a mixed 2D/3D fluid model. J. Phys. D: Appl. Phys. 2015, 48, 06520110.1088/0022-3727/48/6/065201. DOI
Tsugawa K.; Ishihara M.; Kim J.; Hasegawa M.; Koga Y. Large-Area and Low-Temperature Nanodiamond Coating by Microwave Plasma Chemical Vapor Deposition. New Diamond Front. Carbon Technol. 2006, 16, 337–346.
Izak T.; Babchenko O.; Varga M.; Potocky S.; Kromka A. Low temperature diamond growth by linear antenna plasma CVD over large area. Phys. Status Solidi B 2012, 249, 2600–2603. 10.1002/pssb.201200103. DOI
Babchenko O.; Potocký Š.; Ižák T.; Hruška K.; Bryknar Z.; Kromka A. Influence of surface wave plasma deposition conditions on diamond growth regime. Surf. Coat. Technol. 2015, 271, 74–79. 10.1016/j.surfcoat.2015.01.012. DOI
www.ergaerospace.com.
Varga M.; Vretenar V.; Kotlar M.; Skakalova V.; Kromka A. Fabrication of free-standing pure carbon-based composite material with the combination of sp2–sp3 hybridizations. Appl. Surf. Sci. 2014, 308, 211–215. 10.1016/j.apsusc.2014.04.137. DOI
Kromka A.; Jira J.; Stenclova P.; Kriha V.; Kozak H.; Beranova J.; Vretenar V.; Skakalova V.; Rezek B. Bacterial response to nanodiamonds and graphene oxide sheets: Bacterial response to nanodiamonds and graphene oxide. Phys. Status Solidi B 2016, 253, 2481–2485. 10.1002/pssb.201600237. DOI
Filik J. Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like materials. Spectrosc. Eur. 2005, 17, 10–17.
Kromka A.; Babchenko O.; Izak T.; Varga M.; Davydova M.; Kratka M.; Rezek B. Diamond Films Deposited by Oxygen-Enhanced Linear Plasma Chemistry. Adv. Sci. Eng. Med. 2013, 5, 509–514. 10.1166/asem.2013.1331. DOI
Joshi A.; Nimmagadda R. Erosion of diamond films and graphite in oxygen plasma. J. Mater. Res. 1991, 6, 1484–1490. 10.1557/JMR.1991.1484. DOI
Angus J. C.; Sunkara M. K.; et al. Twinning and faceting in early stages of diamond growth by chemical vapor deposition. J. Mater. Res. 1992, 7, 3001–3009. 10.1557/JMR.1992.3001. DOI
Chen H.-G.; Chang L.; Cho S.-Y.; Yan J.-K.; Lu C.-A. Growth of Diamond Nanoplatelets by CVD. Chem. Vap. Deposition 2008, 14, 247–255. 10.1002/cvde.200706655. DOI
Chen H.-G.; Chang L. Characterization of diamond nanoplatelets. Diamond Relat. Mater. 2004, 13, 590–594. 10.1016/j.diamond.2003.11.013. DOI
Lu C.-A.; Chang L. Microstructural investigation of hexagonal-shaped diamond nanoplatelets grown by microwave plasma chemical vapor deposition. Mater. Chem. Phys. 2005, 92, 48–53. 10.1016/j.matchemphys.2004.12.041. DOI
Bachmann P. K.; Leers D.; Lydtin H. Towards a general concept of diamond chemical vapour deposition. Diamond Relat. Mater. 1991, 1, 1–12. 10.1016/0925-9635(91)90005-U. DOI
Potocký Š.; Babchenko O.; Hruška K.; Kromka A. Linear antenna microwave plasma CVD diamond deposition at the edge of no-growth region of C-H-O ternary diagram. Phys. Status Solidi B 2012, 249, 2612–2615. 10.1002/pssb.201200124. DOI
Eaton S. C.; Sunkara M. K. Construction of a new C–H–O ternary diagram for diamond deposition from the vapor phase. Diamond Relat. Mater. 2000, 9, 1320–1326. 10.1016/S0925-9635(00)00245-4. DOI
Wei J.; Kawarada H.; Suzuki J.; Hiraki A. Growth of diamond films at low pressure using magneto-microwave plasma CVD. J. Cryst. Growth 1990, 99, 1201–1205. 10.1016/S0022-0248(08)80108-X. DOI
Stehlik S.; Varga M.; Ledinsky M.; Miliaieva D.; Kozak H.; Skakalova V.; Mangler C.; Pennycook T. J.; Meyer J. C.; Kromka A.; Rezek B. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Sci. Rep. 2016, 6, 3841910.1038/srep38419. PubMed DOI PMC
Barnard A. S.; Russo S. P.; Snook I. K. Surface structure of cubic diamond nanowires. Surf. Sci. 2003, 538, 204–210. 10.1016/S0039-6028(03)00733-7. DOI
Barnard A. S. Structural properties of diamond nanowires: Theoretical predictions and experimental progress. Rev. Adv. Mater. Sci. 2004, 6, 94–119.
Rashidi S.; Esfahani J. A.; Rashidi A. A review on the applications of porous materials in solar energy systems. Renewable Sustainable Energy Rev. 2017, 73, 1198–1210. 10.1016/j.rser.2017.02.028. DOI
Davis M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. 10.1038/nature00785. PubMed DOI
Gao F.; Nebel C. E. Electrically Conductive Diamond Membrane for Electrochemical Separation Processes. ACS Appl. Mater. Interfaces 2016, 8, 18640–18646. 10.1021/acsami.6b07024. PubMed DOI
Kondo T.; Kodama Y.; Ikezoe S.; Yajima K.; Aikawa T.; Yuasa M. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 2014, 77, 783–789. 10.1016/j.carbon.2014.05.082. DOI
Shimoni O.; Cervenka J.; Karle T. J.; Fox K.; Gibson B. C.; Tomljenovic-Hanic S.; Greentree A. D.; Prawer S. Development of a Templated Approach to Fabricate Diamond Patterns on Various Substrates. ACS Appl. Mater. Interfaces 2014, 6, 8894–8902. 10.1021/am5016556. PubMed DOI
High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications