Great Variety of Man-Made Porous Diamond Structures: Pulsed Microwave Cold Plasma System with a Linear Antenna Arrangement

. 2019 May 31 ; 4 (5) : 8441-8450. [epub] 20190514

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31459933

Synthetic diamond films are routinely grown using chemical vapor deposition (CVD) techniques. Due to their extraordinary combination of intrinsic properties, they are used as the functional layers in various bio-optoelectronic devices. It is a challenge to grow the dimensional layers or porous structures that are required. This study reviews the fabrication of various porous diamond-based structures using linear antenna microwave plasma (LAMWP) chemical vapor deposition (CVD), a low-cost technology for growing diamond films over a large area (>1 m2) at low pressure (<100 Pa) and at low temperature (even at 350 °C). From a technological point of view, two different approaches, i.e., templated diamond growth using three different prestructured (macro-, micro-, and nanosized) porous substrates and direct bottom-up growth of ultra-nanoporous diamond (block-stone and dendritelike) films, are successfully employed to form diamond-based structures with controlled porosity and an enhanced surface area. As a bottom-up strategy, the LAMWP CVD system allows diamond growth at as high as 80% CO2 in the CH4/CO2/H2 gas mixture. In summary, the low-pressure and cold plasma conditions in the LAMWP system facilitate the growth on three-dimensionally prestructured substrates of various materials that naturally form porous self-standing diamond structures.

Zobrazit více v PubMed

May P. W. Diamond thin films: a 21st-century material. Philos. Trans. R. Soc., A 2000, 358, 473–495. 10.1098/rsta.2000.0542. DOI

Gicquel A.; Hassouni K.; Silva F.; Achard J. CVD diamond films: from growth to applications. Curr. Appl. Phys. 2001, 1, 479–496. 10.1016/S1567-1739(01)00061-X. DOI

Nebel C. E.; Rezek B.; Shin D.; Uetsuka H.; Yang N. Diamond for bio-sensor applications. J. Phys. D: Appl. Phys. 2007, 40, 6443–6466. 10.1088/0022-3727/40/20/S21. DOI

Liu H.; Wang C.; Gao C.; Han Y.; Luo J.; Zou G.; Wen C. New insights into selected-area deposition of diamond films by means of selective seeding. J. Phys.: Condens. Matter 2002, 14, 10973–10977. 10.1088/0953-8984/14/44/412. DOI

Huff M. A.; Aidala D. A.; Butler J. E. MEMS applications using diamond thin films. Solid State Technol. 2006, 49, 45–46.

Kromka A.; Babchenko O.; Rezek B.; Ledinsky M.; Hruska K.; Potmesil J.; Vanecek M. Simplified procedure for patterned growth of nanocrystalline diamond micro-structures. Thin Solid Films 2009, 518, 343–347. 10.1016/j.tsf.2009.06.014. DOI

Gavrilov S. A.; Dzbanovsky N. N.; Il’ichev É. A.; Minakov P. V.; Poltoratsky É. A.; Rychkov G. S.; Suetin N. V. Electron flow enhancement with a diamond membrane. Tech. Phys. 2004, 49, 108–113. 10.1134/1.1642688. DOI

Davydova M.; Kromka A.; Rezek B.; Babchenko O.; Stuchlik M.; Hruska K. Fabrication of diamond nanorods for gas sensing applications. Appl. Surf. Sci. 2010, 256, 5602–5605. 10.1016/j.apsusc.2010.03.034. DOI

Yang N.; Uetsuka H.; Osawa E.; Nebel C. E. Vertically Aligned Diamond Nanowires for DNA Sensing. Angew. Chem., Int. Ed. 2008, 47, 5183–5185. 10.1002/anie.200801706. PubMed DOI

Kondo T.; Lee S.; Honda K.; Kawai T. Conductive diamond hollow fiber membranes. Electrochem. Commun. 2009, 11, 1688–1691. 10.1016/j.elecom.2009.06.027. DOI

Mehedi H.; Arnault J.-C.; Eon D.; Hébert C.; Carole D.; Omnes F.; Gheeraert E. Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores. Carbon 2013, 59, 448–456. 10.1016/j.carbon.2013.03.038. DOI

Matsumoto H.; Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes 2011, 1, 249–264. 10.3390/membranes1030249. PubMed DOI PMC

Hébert C.; Scorsone E.; Bendali A.; Kiran R.; Cottance M.; Girard H. A.; Degardin J.; Dubus E.; Lissorgues G.; Rousseau L.; Mailley P.; Picaud S.; Bergonzo P. Boron doped diamond biotechnology: from sensors to neurointerfaces. Faraday Discuss. 2014, 172, 47–59. 10.1039/C4FD00040D. PubMed DOI

Siuzdak K.; Bogdanowicz R. Nano-engineered Diamond-based Materials for Supercapacitor Electrodes: A Review. Energy Technol. 2018, 6, 223–237. 10.1002/ente.201700345. DOI

Yang N.; Foord J. S.; Jiang X. Diamond electrochemistry at the nanoscale: A review. Carbon 2016, 99, 90–110. 10.1016/j.carbon.2015.11.061. DOI

Kriele A.; Williams O. A.; Wolfer M.; Hees J. J.; Smirnov W.; Nebel C. E. Formation of nano-pores in nano-crystalline diamond films. Chem. Phys. Lett. 2011, 507, 253–259. 10.1016/j.cplett.2011.03.089. DOI

Aramesh M.; Fox K.; Lau D. W. M.; Fang J.; Ken Ostrikov K.; Prawer S.; Cervenka J. Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon 2014, 75, 452–464. 10.1016/j.carbon.2014.04.025. DOI

Smirnov W.; Hees J. J.; Brink D.; Müller-Sebert W.; Kriele A.; Williams O. A.; Nebel C. E. Anisotropic etching of diamond by molten Ni particles. Appl. Phys. Lett. 2010, 97, 07311710.1063/1.3480602. DOI

Potocký Š.; Ižák T.; Rezek B.; Tesárek P.; Kromka A. Transformation of polymer composite nanofibers to diamond fibers and films by microwave plasma-enhanced CVD process. Appl. Surf. Sci. 2014, 312, 188–191. 10.1016/j.apsusc.2014.05.119. DOI

Scorsone E.; Saada S.; Arnault J. C.; Bergonzo P. Enhanced control of diamond nanoparticle seeding using a polymer matrix. J. Appl. Phys. 2009, 106, 01490810.1063/1.3153118. DOI

Hébert C.; Scorsone E.; Mermoux M.; Bergonzo P. Porous diamond with high electrochemical performance. Carbon 2015, 90, 102–109. 10.1016/j.carbon.2015.04.016. DOI

Suo N.; Huang H.; Wu A.; Cao G.; Hou X.; Zhang G. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution. Appl. Surf. Sci. 2018, 439, 329–335. 10.1016/j.apsusc.2017.12.198. DOI

Yang K.-H.; Nguyen A. K.; Goering P. L.; Sumant A. V.; Narayan R. J. Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment. Interface Focus 2018, 8, 2017006310.1098/rsfs.2017.0063. PubMed DOI PMC

Varga M.; Vretenar V.; Izak T.; Skakalova V.; Kromka A. Carbon nanotubes overgrown and ingrown with nanocrystalline diamond deposited by different CVD plasma systems. Phys. Status Solidi B 2014, 251, 2413–2419. 10.1002/pssb.201451176. DOI

Marton M.; Vojs M.; Kotlár M.; Michniak P.; Vančo L’.; Veselý M.; Redhammer R. Deposition of boron doped diamond and carbon nanomaterials on graphite foam electrodes. Appl. Surf. Sci. 2014, 312, 139–144. 10.1016/j.apsusc.2014.05.199. DOI

Zanin H.; May P. W.; Fermin D. J.; Plana D.; Vieira S. M. C.; Milne W. I.; Corat E. J. Porous Boron-Doped Diamond/Carbon Nanotube Electrodes. ACS Appl. Mater. Interfaces 2014, 6, 990–995. 10.1021/am4044344. PubMed DOI

Varga M.; Stehlik S.; Kaman O.; Izak T.; Domonkos M.; Lee D. S.; Kromka A. Templated diamond growth on porous carbon foam decorated with poly(vinyl alcohol)-nanodiamond composite. Carbon 2017, 119, 124–132. 10.1016/j.carbon.2017.04.022. DOI

Silva A. A.; Pinheiro R. A.; do Amaral Razzino C.; Trava-Airoldi V. J.; Corat E. J. Thin-film nanocomposites of BDD/CNT deposited on carbon fiber. Diamond Relat. Mater. 2017, 75, 116–122. 10.1016/j.diamond.2017.02.017. DOI

Gao F.; Wolfer M. T.; Nebel C. E. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 2014, 80, 833–840. 10.1016/j.carbon.2014.09.007. DOI

Ruffinatto S.; Girard H. A.; Becher F.; Arnault J.-C.; Tromson D.; Bergonzo P. Diamond porous membranes: A material toward analytical chemistry. Diamond Relat. Mater. 2015, 55, 123–130. 10.1016/j.diamond.2015.03.008. DOI

Petrák V.; Vlčková Živcová Z.; Krýsová H.; Frank O.; Zukal A.; Klimša L.; Kopeček J.; Taylor A.; Kavan L.; Mortet V. Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 2017, 114, 457–464. 10.1016/j.carbon.2016.12.012. DOI

Gao F.; Nebel C. E. Diamond-Based Supercapacitors: Realization and Properties. ACS Appl. Mater. Interfaces 2015, 8, 28244–28254. 10.1021/acsami.5b07027. PubMed DOI

Kromka A.; Babchenko O.; Kozak H.; Hruska K.; Rezek B.; Ledinsky M.; Potmesil J.; Michalka M.; Vanecek M. Seeding of polymer substrates for nanocrystalline diamond film growth. Diamond Relat. Mater. 2009, 18, 734–739. 10.1016/j.diamond.2009.01.023. DOI

Varga M.; Potocky S.; Tesarek P.; Babchenko O.; Davydova M.; Kromka A. Diamond growth on copper rods from polymer composite nanofibres. Appl. Surf. Sci. 2014, 312, 220–225. 10.1016/j.apsusc.2014.05.083. DOI

Kato H.; Hees J.; Hoffmann R.; Wolfer M.; Yang N.; Yamasaki S.; Nebel C. E. Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 2013, 33, 88–91. 10.1016/j.elecom.2013.04.028. DOI

Alexeev A. M.; Ismagilov R. R.; Ashkinazi E. E.; Orekhov A. S.; Malykhin S. A.; Obraztsov A. N. Diamond platelets produced by chemical vapor deposition. Diamond Relat. Mater. 2016, 65, 13–16. 10.1016/j.diamond.2015.12.019. DOI

Drijkoningen S.; Pobedinskas P.; Korneychuk S.; Momot A.; Balasubramaniam Y.; Van Bael M. K.; Turner S.; Verbeeck J.; Nesládek M.; Haenen K. On the Origin of Diamond Plates Deposited at Low Temperature. Cryst. Growth Des. 2017, 17, 4306–4314. 10.1021/acs.cgd.7b00623. DOI

Schlemm H.; Fritzsche M.; Roth D. Linear radio frequency plasma sources for large scale industrial applications in photovoltaics. Surf. Coat. Technol. 2005, 200, 958–961. 10.1016/j.surfcoat.2005.05.020. DOI

Kromka A.; Babchenko O.; Izak T.; Hruska K.; Rezek B. Linear antenna microwave plasma CVD deposition of diamond films over large areas. Vacuum 2012, 86, 776–779. 10.1016/j.vacuum.2011.07.008. DOI

Obrusník A.; Bonaventura Z. Studying a low-pressure microwave coaxial discharge in hydrogen using a mixed 2D/3D fluid model. J. Phys. D: Appl. Phys. 2015, 48, 06520110.1088/0022-3727/48/6/065201. DOI

Tsugawa K.; Ishihara M.; Kim J.; Hasegawa M.; Koga Y. Large-Area and Low-Temperature Nanodiamond Coating by Microwave Plasma Chemical Vapor Deposition. New Diamond Front. Carbon Technol. 2006, 16, 337–346.

Izak T.; Babchenko O.; Varga M.; Potocky S.; Kromka A. Low temperature diamond growth by linear antenna plasma CVD over large area. Phys. Status Solidi B 2012, 249, 2600–2603. 10.1002/pssb.201200103. DOI

Babchenko O.; Potocký Š.; Ižák T.; Hruška K.; Bryknar Z.; Kromka A. Influence of surface wave plasma deposition conditions on diamond growth regime. Surf. Coat. Technol. 2015, 271, 74–79. 10.1016/j.surfcoat.2015.01.012. DOI

www.ergaerospace.com.

Varga M.; Vretenar V.; Kotlar M.; Skakalova V.; Kromka A. Fabrication of free-standing pure carbon-based composite material with the combination of sp2–sp3 hybridizations. Appl. Surf. Sci. 2014, 308, 211–215. 10.1016/j.apsusc.2014.04.137. DOI

Kromka A.; Jira J.; Stenclova P.; Kriha V.; Kozak H.; Beranova J.; Vretenar V.; Skakalova V.; Rezek B. Bacterial response to nanodiamonds and graphene oxide sheets: Bacterial response to nanodiamonds and graphene oxide. Phys. Status Solidi B 2016, 253, 2481–2485. 10.1002/pssb.201600237. DOI

Filik J. Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like materials. Spectrosc. Eur. 2005, 17, 10–17.

Kromka A.; Babchenko O.; Izak T.; Varga M.; Davydova M.; Kratka M.; Rezek B. Diamond Films Deposited by Oxygen-Enhanced Linear Plasma Chemistry. Adv. Sci. Eng. Med. 2013, 5, 509–514. 10.1166/asem.2013.1331. DOI

Joshi A.; Nimmagadda R. Erosion of diamond films and graphite in oxygen plasma. J. Mater. Res. 1991, 6, 1484–1490. 10.1557/JMR.1991.1484. DOI

Angus J. C.; Sunkara M. K.; et al. Twinning and faceting in early stages of diamond growth by chemical vapor deposition. J. Mater. Res. 1992, 7, 3001–3009. 10.1557/JMR.1992.3001. DOI

Chen H.-G.; Chang L.; Cho S.-Y.; Yan J.-K.; Lu C.-A. Growth of Diamond Nanoplatelets by CVD. Chem. Vap. Deposition 2008, 14, 247–255. 10.1002/cvde.200706655. DOI

Chen H.-G.; Chang L. Characterization of diamond nanoplatelets. Diamond Relat. Mater. 2004, 13, 590–594. 10.1016/j.diamond.2003.11.013. DOI

Lu C.-A.; Chang L. Microstructural investigation of hexagonal-shaped diamond nanoplatelets grown by microwave plasma chemical vapor deposition. Mater. Chem. Phys. 2005, 92, 48–53. 10.1016/j.matchemphys.2004.12.041. DOI

Bachmann P. K.; Leers D.; Lydtin H. Towards a general concept of diamond chemical vapour deposition. Diamond Relat. Mater. 1991, 1, 1–12. 10.1016/0925-9635(91)90005-U. DOI

Potocký Š.; Babchenko O.; Hruška K.; Kromka A. Linear antenna microwave plasma CVD diamond deposition at the edge of no-growth region of C-H-O ternary diagram. Phys. Status Solidi B 2012, 249, 2612–2615. 10.1002/pssb.201200124. DOI

Eaton S. C.; Sunkara M. K. Construction of a new C–H–O ternary diagram for diamond deposition from the vapor phase. Diamond Relat. Mater. 2000, 9, 1320–1326. 10.1016/S0925-9635(00)00245-4. DOI

Wei J.; Kawarada H.; Suzuki J.; Hiraki A. Growth of diamond films at low pressure using magneto-microwave plasma CVD. J. Cryst. Growth 1990, 99, 1201–1205. 10.1016/S0022-0248(08)80108-X. DOI

Stehlik S.; Varga M.; Ledinsky M.; Miliaieva D.; Kozak H.; Skakalova V.; Mangler C.; Pennycook T. J.; Meyer J. C.; Kromka A.; Rezek B. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Sci. Rep. 2016, 6, 3841910.1038/srep38419. PubMed DOI PMC

Barnard A. S.; Russo S. P.; Snook I. K. Surface structure of cubic diamond nanowires. Surf. Sci. 2003, 538, 204–210. 10.1016/S0039-6028(03)00733-7. DOI

Barnard A. S. Structural properties of diamond nanowires: Theoretical predictions and experimental progress. Rev. Adv. Mater. Sci. 2004, 6, 94–119.

Rashidi S.; Esfahani J. A.; Rashidi A. A review on the applications of porous materials in solar energy systems. Renewable Sustainable Energy Rev. 2017, 73, 1198–1210. 10.1016/j.rser.2017.02.028. DOI

Davis M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. 10.1038/nature00785. PubMed DOI

Gao F.; Nebel C. E. Electrically Conductive Diamond Membrane for Electrochemical Separation Processes. ACS Appl. Mater. Interfaces 2016, 8, 18640–18646. 10.1021/acsami.6b07024. PubMed DOI

Kondo T.; Kodama Y.; Ikezoe S.; Yajima K.; Aikawa T.; Yuasa M. Porous boron-doped diamond electrodes fabricated via two-step thermal treatment. Carbon 2014, 77, 783–789. 10.1016/j.carbon.2014.05.082. DOI

Shimoni O.; Cervenka J.; Karle T. J.; Fox K.; Gibson B. C.; Tomljenovic-Hanic S.; Greentree A. D.; Prawer S. Development of a Templated Approach to Fabricate Diamond Patterns on Various Substrates. ACS Appl. Mater. Interfaces 2014, 6, 8894–8902. 10.1021/am5016556. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications

. 2024 Nov 08 ; 7 (21) : 24766-24777. [epub] 20241025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...