Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36763803
PubMed Central
PMC10017024
DOI
10.1021/acs.inorgchem.2c03282
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In recent decades, transition-metal coordination compounds have been extensively studied for their antitumor and antimetastatic activities. In this work, we synthesized a set of symmetric and asymmetric Ru(III) and Rh(III) coordination compounds of the general structure (Na+/K+/PPh4+/LH+) [trans-MIIIL(eq)nL(ax)2]- (M = RuIII or RhIII; L(eq) = Cl, n = 4; L(eq) = ox, n = 2; L(ax) = 4-R-pyridine, R = CH3, H, C6H5, COOH, CF3, CN; L(ax) = DMSO-S) and systematically investigated their structure, stability, and NMR properties. 1H and 13C NMR spectra measured at various temperatures were used to break down the total NMR shifts into the orbital (temperature-independent) and hyperfine (temperature-dependent) contributions. The hyperfine NMR shifts for paramagnetic Ru(III) compounds were analyzed in detail using relativistic density functional theory (DFT). The effects of (i) the 4-R substituent of pyridine, (ii) the axial trans ligand L(ax), and (iii) the equatorial ligands L(eq) on the distribution of spin density reflected in the "through-bond" (contact) and the "through-space" (pseudocontact) contributions to the hyperfine NMR shifts of the individual atoms of the pyridine ligands are rationalized. Further, we demonstrate the large effects of the solvent on the hyperfine NMR shifts and discuss our observations in the general context of the paramagnetic NMR spectroscopy of transition-metal complexes.
CEITEC─Central European Institute of Technology Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Zobrazit více v PubMed
Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–Activity Relationships for Ruthenium and Osmium Anticancer Agents – towards Clinical Development. Chem. Soc. Rev. 2018, 47, 909–928. 10.1039/C7CS00332C. PubMed DOI
Englinger B.; Pirker C.; Heffeter P.; Terenzi A.; Kowol C. R.; Keppler B. K.; Berger W. Metal Drugs and the Anticancer Immune Response. Chem. Rev. 2019, 119, 1519–1624. 10.1021/acs.chemrev.8b00396. PubMed DOI
Boros E.; Dyson P. J.; Gasser G. Classification of Metal-Based Drugs According to Their Mechanisms of Action. Chem 2020, 6, 41–60. 10.1016/j.chempr.2019.10.013. PubMed DOI PMC
Kenny R. G.; Marmion C. J. Toward Multi-Targeted Platinum and Ruthenium Drugs -A New Paradigm in Cancer Drug Treatment Regimens?. Chem. Rev. 2019, 119, 1058–1137. 10.1021/acs.chemrev.8b00271. PubMed DOI
Wang X.; Wang X.; Jin S.; Muhammad N.; Guo Z. Stimuli-Responsive Therapeutic Metallodrugs. Chem. Rev. 2019, 119, 1138–1192. 10.1021/acs.chemrev.8b00209. PubMed DOI
Rastrelli F.; Bagno A. Predicting the NMR Spectra of Paramagnetic Molecules by DFT: Application to Organic Free Radicals and Transition-Metal Complexes. Chem. - Eur. J. 2009, 15, 7990–8004. 10.1002/chem.200802443. PubMed DOI
Rastrelli F.; Bagno A. Predicting the 1H and 13C NMR Spectra of Paramagnetic Ru(III) Complexes by DFT. Magn. Reson. Chem. 2010, 48, S132–141. 10.1002/mrc.2666. PubMed DOI
Novotný J.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016, 138, 8432–8445. 10.1021/jacs.6b02749. PubMed DOI
Novotný J.; Přichystal D.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorg. Chem. 2018, 57, 641–652. 10.1021/acs.inorgchem.7b02440. PubMed DOI
Moon S.; Patchkovskii S.. First-Principles Calculations of Paramagnetic NMR Shifts. In Calculation of NMR and EPR Parameters; Kaupp M.; Bühl M.; Malkin V., Eds.; Wiley-VCH Verlag, 2004; pp 325–338.
Vaara J.Chemical Shift in Paramagnetic Systems. In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems; Elsevier, 2013; pp 41–67.
Autschbach J.NMR Calculations for Paramagnetic Molecules and Metal Complexes. In Annual Reports in Computational Chemistry; Dixon D. A., Ed.; Elsevier, 2015; Vol. 11, pp 3–36.
Bertini I.; Luchinat C.; Parigi G.; Ravera E.. NMR of Paramagnetic Molecules, 2nd ed.; Elsevier Science, 2016.
Pell A. J.; Pintacuda G.; Grey C. P. Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. 10.1016/j.pnmrs.2018.05.001. PubMed DOI
Autschbach J.; Patchkovskii S.; Pritchard B. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory. J. Chem. Theory Comput. 2011, 7, 2175–2188. 10.1021/ct200143w. PubMed DOI
Komorovsky S.; Repisky M.; Ruud K.; Malkina O. L.; Malkin V. G. Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. J. Phys. Chem. A 2013, 117, 14209–14219. 10.1021/jp408389h. PubMed DOI
Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC
Cordero B.; Gómez V.; Platero-Prats A. E.; Revés M.; Echeverría J.; Cremades E.; Barragán F.; Alvarez S. Covalent Radii Revisited. Dalton Trans. 2008, 2832–2838. 10.1039/B801115J. PubMed DOI
Chatlas J.; van Eldik R.; Keppler B. K. Spontaneous Aquation Reactions of a Promising Tumor Inhibitor Trans-Imidazolium-Tetrachlorobis(Imidazole)Ruthenium(III), Trans-HIm[RuCl4(Im)2]. Inorg. Chim. Acta 1995, 233, 59–63. 10.1016/0020-1693(94)04447-4. DOI
Küng A.; Pieper T.; Wissiack R.; Rosenberg E.; Keppler B. K. Hydrolysis of the Tumor-Inhibiting Ruthenium(III) Complexes HIm Trans-[RuCl4(Im)2] and HInd Trans-[RuCl4(Ind)2] Investigated by Means of HPCE and HPLC-MS. JBIC, J. Biol. Inorg. Chem. 2001, 6, 292–299. 10.1007/s007750000203. PubMed DOI
Chen J.; Chen L.; Liao S.; Zheng K.; Ji L. A Theoretical Study on the Hydrolysis Process of the Antimetastatic Ruthenium(III) Complex NAMI-A. J. Phys. Chem. B 2007, 111, 7862–7869. 10.1021/jp0711794. PubMed DOI
La Mar G. N.; De Ropp J. S.; Latos-Grazynski L.; Balch A. L.; Johnson R. B.; Smith K. M.; Parish D. W.; Cheng R. J. Proton NMR Characterization of the Ferryl Group in Model Heme Complexes and Hemoproteins: Evidence for the FeIVO Group in Ferryl Myoglobin and Compound II of Horseradish Peroxidase. J. Am. Chem. Soc. 1983, 105, 782–787. 10.1021/ja00342a022. DOI
Shokhirev N. V.; Walker F. A. Analysis of the Temperature Dependence of the 1H Contact Shifts in Low-Spin Fe(III) Model Hemes and Heme Proteins: Explanation of “Curie” and “Anti-Curie” Behavior within the Same Molecule. J. Phys. Chem. A 1995, 99, 17795–17804. 10.1021/j100050a020. DOI
Banci L.; Bertini I.; Luchinat C.; Pierattelli R.; Shokhirev N. V.; Walker F. A. Analysis of the Temperature Dependence of the 1H and 13C Isotropic Shifts of Horse Heart Ferricytochrome c: Explanation of Curie and Anti-Curie Temperature Dependence and Nonlinear Pseudocontact Shifts in a Common Two-Level Framework. J. Am. Chem. Soc. 1998, 120, 8472–8479. 10.1021/ja980261x. DOI
Kaupp M.; Köhler F. H. Combining NMR Spectroscopy and Quantum Chemistry as Tools to Quantify Spin Density Distributions in Molecular Magnetic Compounds. Coord. Chem. Rev. 2009, 253, 2376–2386. 10.1016/j.ccr.2008.12.020. DOI
Hansch Corwin.; Leo A.; Taft R. W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. 10.1021/cr00002a004. DOI
Sudhindra P.; Ajay Sharma S.; Roy N.; Moharana P.; Paira P. Recent Advances in Cytotoxicity, Cellular Uptake and Mechanism of Action of Ruthenium Metallodrugs: A Review. Polyhedron 2020, 192, 11482710.1016/j.poly.2020.114827. DOI
Lin K.; Zhao Z.-Z.; Bo H.-B.; Hao X.-J.; Wang J.-Q. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front. Pharmacol. 2018, 9, 132310.3389/fphar.2018.01323. PubMed DOI PMC
Anderson C.; Beauchamp A. L. 1 H NMR Study of the Solvolysis of the Paramagnetic Tetrachloro-Bis(Imidazole)Ruthenium(III) Anion in Water, Methanol, and Dimethyl Sulfoxide. Can. J. Chem. 1995, 73, 471–482. 10.1139/v95-062. DOI
Chyba J.; Novák M.; Munzarová P.; Novotný J.; Marek R. Through-Space Paramagnetic NMR Effects in Host–Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018, 57, 8735–8747. 10.1021/acs.inorgchem.7b03233. PubMed DOI
Malali S.; Chyba J.; Knor M.; Horní M.; Nečas M.; Novotný J.; Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal–Ligand Bond and Host–Guest Binding with Cucurbit[7]Uril. Inorg. Chem. 2020, 59, 10185–10196. 10.1021/acs.inorgchem.0c01328. PubMed DOI
Pieper T.; Peti W.; Keppler B. K. Solvolysis of the Tumor-Inhibiting Ru(III)-Complex Trans-Tetrachlorobis(Indazole)Ruthenate(III). Met.-Based Drugs 2000, 7, 225–232. 10.1155/MBD.2000.225. PubMed DOI PMC
Bacac M.; Hotze A. C. G.; van der Schilden K.; Haasnoot J. G.; Pacor S.; Alessio E.; Sava G.; Reedijk J. The Hydrolysis of the Anti-Cancer Ruthenium Complex NAMI-A Affects Its DNA Binding and Antimetastatic Activity: An NMR Evaluation. J. Inorg. Biochem. 2004, 98, 402–412. 10.1016/j.jinorgbio.2003.12.003. PubMed DOI
Webb M. I.; Walsby C. J. Control of Ligand-Exchange Processes and the Oxidation State of the Antimetastatic Ru(Iii) Complex NAMI-A by Interactions with Human Serum Albumin. Dalton Trans. 2011, 40, 1322.10.1039/c0dt01168a. PubMed DOI
Webb M. I.; Chard R. A.; Al-Jobory Y. M.; Jones M. R.; Wong E. W. Y.; Walsby C. J. Pyridine Analogues of the Antimetastatic Ru(III) Complex NAMI-A Targeting Non-Covalent Interactions with Albumin. Inorg. Chem. 2012, 51, 954–966. 10.1021/ic202029e. PubMed DOI
Cooper J. N.; McCoy J. D.; Katz M. G.; Deutsch E. Trans Effect in Octahedral Complexes. 4. Kinetic Trans Effect Induced by the S-Bonded Thiosulfato Ligand in Bis(Ethylenediamine)Cobalt(III) Complexes. Inorg. Chem. 1980, 19, 2265–2271. 10.1021/ic50210a015. DOI
Coe B. J.; Glenwright S. J. Trans-Effects in Octahedral Transition Metal Complexes. Coord. Chem. Rev. 2000, 203, 5–80. 10.1016/S0010-8545(99)00184-8. DOI
TURBOMOLE V7.2 2017, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH.
Bertini I.; Luchinat C.; Parigi G. Magnetic Susceptibility in Paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 40, 249–273. 10.1016/S0079-6565(02)00002-X. DOI
Novotný J.; Jeremias L.; Nimax P.; Komorovsky S.; Heinmaa I.; Marek R. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorg. Chem. 2021, 60, 9368–9377. 10.1021/acs.inorgchem.1c00204. PubMed DOI PMC
Asher J. R.; Doltsinis N. L.; Kaupp M. Ab Initio Molecular Dynamics Simulations and G-Tensor Calculations of Aqueous Benzosemiquinone Radical Anion: Effects of Regular and “T-Stacked” Hydrogen Bonds. J. Am. Chem. Soc. 2004, 126, 9854–9861. 10.1021/ja0485053. PubMed DOI
Rantaharju J.; Mareš J.; Vaara J. Spin Dynamics Simulation of Electron Spin Relaxation in Ni2+ (Aq). J. Chem. Phys. 2014, 141, 01410910.1063/1.4885050. PubMed DOI
Webb M. I.; Wu B.; Jang T.; Chard R. A.; Wong E. W. Y.; Wong M. Q.; Yapp D. T. T.; Walsby C. J. Increasing the Bioavailability of RuIII Anticancer Complexes through Hydrophobic Albumin Interactions. Chem. - Eur. J. 2013, 19, 17031–17042. 10.1002/chem.201302671. PubMed DOI
Chang S. W.; Lewis A. R.; Prosser K. E.; Thompson J. R.; Gladkikh M.; Bally M. B.; Warren J. J.; Walsby C. J. CF 3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity. Inorg. Chem. 2016, 55, 4850–4863. 10.1021/acs.inorgchem.6b00359. PubMed DOI
Mestroni G.; Alessio E.; Sava G.; Pacor S.; Coluccia M.; Boccarelli A. Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties. Met.-Based Drugs 1994, 1, 41–63. 10.1155/MBD.1994.41. PubMed DOI PMC
Mitchell R. W.; Spencer A.; Wilkinson G. Carboxylato-Triphenylphosphine Complexes of Ruthenium, Cationic Triphenylphosphine Complexes Derived from Them, and Their Behaviour as Homogeneous Hydrogenation Catalysts for Alkenes. J. Chem. Soc., Dalton Trans. 1973, 84610.1039/dt9730000846. DOI
Elnajjar F. O.; Wang R.; Aquino M. A. S. Synthesis, Structure and Electrochemistry of Ruthenium(II) and (III) Mono- and Bis-Oxalato Complexes. Inorg. Chim. Acta 2020, 502, 11938810.1016/j.ica.2019.119388. DOI
Sheldrick G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. 10.1107/S0108767307043930. PubMed DOI
Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 329710.1039/b508541a. PubMed DOI
Klamt A.; Schüürmann G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799–805. 10.1039/P29930000799. DOI
Bühl M.; Reimann C.; Pantazis D. A.; Bredow T.; Neese F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2008, 4, 1449–1459. 10.1021/ct800172j. PubMed DOI
Vícha J.; Patzschke M.; Marek R. A Relativistic DFT Methodology for Calculating the Structures and NMR Chemical Shifts of Octahedral Platinum and Iridium Complexes. Phys. Chem. Chem. Phys. 2013, 15, 7740–7754. 10.1039/c3cp44440f. PubMed DOI
Vícha J.; Novotný J.; Straka M.; Repisky M.; Ruud K.; Komorovsky S.; Marek R. Structure, Solvent, and Relativistic Effects on the NMR Chemical Shifts in Square-Planar Transition-Metal Complexes: Assessment of DFT Approaches. Phys. Chem. Chem. Phys. 2015, 17, 24944–24955. 10.1039/C5CP04214C. PubMed DOI
Jeremias L.; Novotný J.; Repisky M.; Komorovsky S.; Marek R. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorg. Chem. 2018, 57, 8748–8759. 10.1021/acs.inorgchem.8b00073. PubMed DOI
Vícha J.; Novotný J.; Komorovsky S.; Straka M.; Kaupp M.; Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020, 120, 7065–7103. 10.1021/acs.chemrev.9b00785. PubMed DOI
van Lenthe E.; Snijders J. G.; Baerends E. J. The Zero-order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105, 6505–6516. 10.1063/1.472460. DOI
Autschbach J.; Pritchard B. Calculation of Molecular G-Tensors Using the Zeroth-Order Regular Approximation and Density Functional Theory: Expectation Value versus Linear Response Approaches. Theor. Chem. Acc. 2011, 129, 453–466. 10.1007/s00214-010-0880-x. DOI
Baerends E. J.; Ziegler T.; Atkins A. J.; Autschbach J.; Baseggio O.; Bashford D.; Bérces A.; Bickelhaupt F. M.; Bo C.; Boerrigter P. M.; Cavallo L.; Daul C.; Chong D. P.; Chulhai D. V.; Deng L.; Dickson R. M.; Dieterich J. M.; Ellis D. E.; van Faassen M.; Fan L.. ADF, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com, 2019.
Haase P. A. B.; Repisky M.; Komorovsky S.; Bendix J.; Sauer S. P. A. Relativistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido Complexes: [ReF6]2– and [IrF6]2–. Chem. - Eur. J. 2018, 24, 5124–5133. 10.1002/chem.201882068. PubMed DOI PMC
Bora P. L.; Novotný J.; Ruud K.; Komorovsky S.; Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J. Chem. Theory Comput. 2019, 15, 201–214. 10.1021/acs.jctc.8b00914. PubMed DOI
Gendron F.; Sharkas K.; Autschbach J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. J. Phys. Chem. Lett. 2015, 6, 2183–2188. 10.1021/acs.jpclett.5b00932. PubMed DOI
Dyall K. G. Relativistic Double-Zeta, Triple-Zeta, and Quadruple-Zeta Basis Sets for the 4d Elements Y–Cd. Theor. Chem. Acc. 2007, 117, 483–489. 10.1007/s00214-006-0174-5. PubMed DOI
Jensen F. The Basis Set Convergence of Spin-Spin Coupling Constants Calculated by Density Functional Methods. J. Chem. Theory Comput. 2006, 2, 1360–1369. 10.1021/ct600166u. PubMed DOI
Repisky M.; Komorovsky S.; Malkin V.; Malkina O. L.; Kaupp M.; Ruud K.; Bast R.; Ekstrom U.; Kadek M.; Knecht S.; Konecny L.; Malkin E.; Malkin Ondík I.. Relativistic Spectroscopy DFT Program ReSpect, Developer Version 5.2.0, 2020. PubMed
Álvarez-Moreno M.; de Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55, 95–103. 10.1021/ci500593j. PubMed DOI
Mechanisms of Ligand Hyperfine Coupling in Transition-Metal Complexes: σ and π Transmission Pathways