Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands

. 2023 Feb 27 ; 62 (8) : 3381-3394. [epub] 20230210

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36763803

In recent decades, transition-metal coordination compounds have been extensively studied for their antitumor and antimetastatic activities. In this work, we synthesized a set of symmetric and asymmetric Ru(III) and Rh(III) coordination compounds of the general structure (Na+/K+/PPh4+/LH+) [trans-MIIIL(eq)nL(ax)2]- (M = RuIII or RhIII; L(eq) = Cl, n = 4; L(eq) = ox, n = 2; L(ax) = 4-R-pyridine, R = CH3, H, C6H5, COOH, CF3, CN; L(ax) = DMSO-S) and systematically investigated their structure, stability, and NMR properties. 1H and 13C NMR spectra measured at various temperatures were used to break down the total NMR shifts into the orbital (temperature-independent) and hyperfine (temperature-dependent) contributions. The hyperfine NMR shifts for paramagnetic Ru(III) compounds were analyzed in detail using relativistic density functional theory (DFT). The effects of (i) the 4-R substituent of pyridine, (ii) the axial trans ligand L(ax), and (iii) the equatorial ligands L(eq) on the distribution of spin density reflected in the "through-bond" (contact) and the "through-space" (pseudocontact) contributions to the hyperfine NMR shifts of the individual atoms of the pyridine ligands are rationalized. Further, we demonstrate the large effects of the solvent on the hyperfine NMR shifts and discuss our observations in the general context of the paramagnetic NMR spectroscopy of transition-metal complexes.

Zobrazit více v PubMed

Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–Activity Relationships for Ruthenium and Osmium Anticancer Agents – towards Clinical Development. Chem. Soc. Rev. 2018, 47, 909–928. 10.1039/C7CS00332C. PubMed DOI

Englinger B.; Pirker C.; Heffeter P.; Terenzi A.; Kowol C. R.; Keppler B. K.; Berger W. Metal Drugs and the Anticancer Immune Response. Chem. Rev. 2019, 119, 1519–1624. 10.1021/acs.chemrev.8b00396. PubMed DOI

Boros E.; Dyson P. J.; Gasser G. Classification of Metal-Based Drugs According to Their Mechanisms of Action. Chem 2020, 6, 41–60. 10.1016/j.chempr.2019.10.013. PubMed DOI PMC

Kenny R. G.; Marmion C. J. Toward Multi-Targeted Platinum and Ruthenium Drugs -A New Paradigm in Cancer Drug Treatment Regimens?. Chem. Rev. 2019, 119, 1058–1137. 10.1021/acs.chemrev.8b00271. PubMed DOI

Wang X.; Wang X.; Jin S.; Muhammad N.; Guo Z. Stimuli-Responsive Therapeutic Metallodrugs. Chem. Rev. 2019, 119, 1138–1192. 10.1021/acs.chemrev.8b00209. PubMed DOI

Rastrelli F.; Bagno A. Predicting the NMR Spectra of Paramagnetic Molecules by DFT: Application to Organic Free Radicals and Transition-Metal Complexes. Chem. - Eur. J. 2009, 15, 7990–8004. 10.1002/chem.200802443. PubMed DOI

Rastrelli F.; Bagno A. Predicting the 1H and 13C NMR Spectra of Paramagnetic Ru(III) Complexes by DFT. Magn. Reson. Chem. 2010, 48, S132–141. 10.1002/mrc.2666. PubMed DOI

Novotný J.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016, 138, 8432–8445. 10.1021/jacs.6b02749. PubMed DOI

Novotný J.; Přichystal D.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorg. Chem. 2018, 57, 641–652. 10.1021/acs.inorgchem.7b02440. PubMed DOI

Moon S.; Patchkovskii S.. First-Principles Calculations of Paramagnetic NMR Shifts. In Calculation of NMR and EPR Parameters; Kaupp M.; Bühl M.; Malkin V., Eds.; Wiley-VCH Verlag, 2004; pp 325–338.

Vaara J.Chemical Shift in Paramagnetic Systems. In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems; Elsevier, 2013; pp 41–67.

Autschbach J.NMR Calculations for Paramagnetic Molecules and Metal Complexes. In Annual Reports in Computational Chemistry; Dixon D. A., Ed.; Elsevier, 2015; Vol. 11, pp 3–36.

Bertini I.; Luchinat C.; Parigi G.; Ravera E.. NMR of Paramagnetic Molecules, 2nd ed.; Elsevier Science, 2016.

Pell A. J.; Pintacuda G.; Grey C. P. Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. 10.1016/j.pnmrs.2018.05.001. PubMed DOI

Autschbach J.; Patchkovskii S.; Pritchard B. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory. J. Chem. Theory Comput. 2011, 7, 2175–2188. 10.1021/ct200143w. PubMed DOI

Komorovsky S.; Repisky M.; Ruud K.; Malkina O. L.; Malkin V. G. Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. J. Phys. Chem. A 2013, 117, 14209–14219. 10.1021/jp408389h. PubMed DOI

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Cordero B.; Gómez V.; Platero-Prats A. E.; Revés M.; Echeverría J.; Cremades E.; Barragán F.; Alvarez S. Covalent Radii Revisited. Dalton Trans. 2008, 2832–2838. 10.1039/B801115J. PubMed DOI

Chatlas J.; van Eldik R.; Keppler B. K. Spontaneous Aquation Reactions of a Promising Tumor Inhibitor Trans-Imidazolium-Tetrachlorobis(Imidazole)Ruthenium(III), Trans-HIm[RuCl4(Im)2]. Inorg. Chim. Acta 1995, 233, 59–63. 10.1016/0020-1693(94)04447-4. DOI

Küng A.; Pieper T.; Wissiack R.; Rosenberg E.; Keppler B. K. Hydrolysis of the Tumor-Inhibiting Ruthenium(III) Complexes HIm Trans-[RuCl4(Im)2] and HInd Trans-[RuCl4(Ind)2] Investigated by Means of HPCE and HPLC-MS. JBIC, J. Biol. Inorg. Chem. 2001, 6, 292–299. 10.1007/s007750000203. PubMed DOI

Chen J.; Chen L.; Liao S.; Zheng K.; Ji L. A Theoretical Study on the Hydrolysis Process of the Antimetastatic Ruthenium(III) Complex NAMI-A. J. Phys. Chem. B 2007, 111, 7862–7869. 10.1021/jp0711794. PubMed DOI

La Mar G. N.; De Ropp J. S.; Latos-Grazynski L.; Balch A. L.; Johnson R. B.; Smith K. M.; Parish D. W.; Cheng R. J. Proton NMR Characterization of the Ferryl Group in Model Heme Complexes and Hemoproteins: Evidence for the FeIVO Group in Ferryl Myoglobin and Compound II of Horseradish Peroxidase. J. Am. Chem. Soc. 1983, 105, 782–787. 10.1021/ja00342a022. DOI

Shokhirev N. V.; Walker F. A. Analysis of the Temperature Dependence of the 1H Contact Shifts in Low-Spin Fe(III) Model Hemes and Heme Proteins: Explanation of “Curie” and “Anti-Curie” Behavior within the Same Molecule. J. Phys. Chem. A 1995, 99, 17795–17804. 10.1021/j100050a020. DOI

Banci L.; Bertini I.; Luchinat C.; Pierattelli R.; Shokhirev N. V.; Walker F. A. Analysis of the Temperature Dependence of the 1H and 13C Isotropic Shifts of Horse Heart Ferricytochrome c: Explanation of Curie and Anti-Curie Temperature Dependence and Nonlinear Pseudocontact Shifts in a Common Two-Level Framework. J. Am. Chem. Soc. 1998, 120, 8472–8479. 10.1021/ja980261x. DOI

Kaupp M.; Köhler F. H. Combining NMR Spectroscopy and Quantum Chemistry as Tools to Quantify Spin Density Distributions in Molecular Magnetic Compounds. Coord. Chem. Rev. 2009, 253, 2376–2386. 10.1016/j.ccr.2008.12.020. DOI

Hansch Corwin.; Leo A.; Taft R. W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. 10.1021/cr00002a004. DOI

Sudhindra P.; Ajay Sharma S.; Roy N.; Moharana P.; Paira P. Recent Advances in Cytotoxicity, Cellular Uptake and Mechanism of Action of Ruthenium Metallodrugs: A Review. Polyhedron 2020, 192, 11482710.1016/j.poly.2020.114827. DOI

Lin K.; Zhao Z.-Z.; Bo H.-B.; Hao X.-J.; Wang J.-Q. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Front. Pharmacol. 2018, 9, 132310.3389/fphar.2018.01323. PubMed DOI PMC

Anderson C.; Beauchamp A. L. 1 H NMR Study of the Solvolysis of the Paramagnetic Tetrachloro-Bis(Imidazole)Ruthenium(III) Anion in Water, Methanol, and Dimethyl Sulfoxide. Can. J. Chem. 1995, 73, 471–482. 10.1139/v95-062. DOI

Chyba J.; Novák M.; Munzarová P.; Novotný J.; Marek R. Through-Space Paramagnetic NMR Effects in Host–Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018, 57, 8735–8747. 10.1021/acs.inorgchem.7b03233. PubMed DOI

Malali S.; Chyba J.; Knor M.; Horní M.; Nečas M.; Novotný J.; Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal–Ligand Bond and Host–Guest Binding with Cucurbit[7]Uril. Inorg. Chem. 2020, 59, 10185–10196. 10.1021/acs.inorgchem.0c01328. PubMed DOI

Pieper T.; Peti W.; Keppler B. K. Solvolysis of the Tumor-Inhibiting Ru(III)-Complex Trans-Tetrachlorobis(Indazole)Ruthenate(III). Met.-Based Drugs 2000, 7, 225–232. 10.1155/MBD.2000.225. PubMed DOI PMC

Bacac M.; Hotze A. C. G.; van der Schilden K.; Haasnoot J. G.; Pacor S.; Alessio E.; Sava G.; Reedijk J. The Hydrolysis of the Anti-Cancer Ruthenium Complex NAMI-A Affects Its DNA Binding and Antimetastatic Activity: An NMR Evaluation. J. Inorg. Biochem. 2004, 98, 402–412. 10.1016/j.jinorgbio.2003.12.003. PubMed DOI

Webb M. I.; Walsby C. J. Control of Ligand-Exchange Processes and the Oxidation State of the Antimetastatic Ru(Iii) Complex NAMI-A by Interactions with Human Serum Albumin. Dalton Trans. 2011, 40, 1322.10.1039/c0dt01168a. PubMed DOI

Webb M. I.; Chard R. A.; Al-Jobory Y. M.; Jones M. R.; Wong E. W. Y.; Walsby C. J. Pyridine Analogues of the Antimetastatic Ru(III) Complex NAMI-A Targeting Non-Covalent Interactions with Albumin. Inorg. Chem. 2012, 51, 954–966. 10.1021/ic202029e. PubMed DOI

Cooper J. N.; McCoy J. D.; Katz M. G.; Deutsch E. Trans Effect in Octahedral Complexes. 4. Kinetic Trans Effect Induced by the S-Bonded Thiosulfato Ligand in Bis(Ethylenediamine)Cobalt(III) Complexes. Inorg. Chem. 1980, 19, 2265–2271. 10.1021/ic50210a015. DOI

Coe B. J.; Glenwright S. J. Trans-Effects in Octahedral Transition Metal Complexes. Coord. Chem. Rev. 2000, 203, 5–80. 10.1016/S0010-8545(99)00184-8. DOI

TURBOMOLE V7.2 2017, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH.

Bertini I.; Luchinat C.; Parigi G. Magnetic Susceptibility in Paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 40, 249–273. 10.1016/S0079-6565(02)00002-X. DOI

Novotný J.; Jeremias L.; Nimax P.; Komorovsky S.; Heinmaa I.; Marek R. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorg. Chem. 2021, 60, 9368–9377. 10.1021/acs.inorgchem.1c00204. PubMed DOI PMC

Asher J. R.; Doltsinis N. L.; Kaupp M. Ab Initio Molecular Dynamics Simulations and G-Tensor Calculations of Aqueous Benzosemiquinone Radical Anion: Effects of Regular and “T-Stacked” Hydrogen Bonds. J. Am. Chem. Soc. 2004, 126, 9854–9861. 10.1021/ja0485053. PubMed DOI

Rantaharju J.; Mareš J.; Vaara J. Spin Dynamics Simulation of Electron Spin Relaxation in Ni2+ (Aq). J. Chem. Phys. 2014, 141, 01410910.1063/1.4885050. PubMed DOI

Webb M. I.; Wu B.; Jang T.; Chard R. A.; Wong E. W. Y.; Wong M. Q.; Yapp D. T. T.; Walsby C. J. Increasing the Bioavailability of RuIII Anticancer Complexes through Hydrophobic Albumin Interactions. Chem. - Eur. J. 2013, 19, 17031–17042. 10.1002/chem.201302671. PubMed DOI

Chang S. W.; Lewis A. R.; Prosser K. E.; Thompson J. R.; Gladkikh M.; Bally M. B.; Warren J. J.; Walsby C. J. CF 3 Derivatives of the Anticancer Ru(III) Complexes KP1019, NKP-1339, and Their Imidazole and Pyridine Analogues Show Enhanced Lipophilicity, Albumin Interactions, and Cytotoxicity. Inorg. Chem. 2016, 55, 4850–4863. 10.1021/acs.inorgchem.6b00359. PubMed DOI

Mestroni G.; Alessio E.; Sava G.; Pacor S.; Coluccia M.; Boccarelli A. Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties. Met.-Based Drugs 1994, 1, 41–63. 10.1155/MBD.1994.41. PubMed DOI PMC

Mitchell R. W.; Spencer A.; Wilkinson G. Carboxylato-Triphenylphosphine Complexes of Ruthenium, Cationic Triphenylphosphine Complexes Derived from Them, and Their Behaviour as Homogeneous Hydrogenation Catalysts for Alkenes. J. Chem. Soc., Dalton Trans. 1973, 84610.1039/dt9730000846. DOI

Elnajjar F. O.; Wang R.; Aquino M. A. S. Synthesis, Structure and Electrochemistry of Ruthenium(II) and (III) Mono- and Bis-Oxalato Complexes. Inorg. Chim. Acta 2020, 502, 11938810.1016/j.ica.2019.119388. DOI

Sheldrick G. M. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. 10.1107/S0108767307043930. PubMed DOI

Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 329710.1039/b508541a. PubMed DOI

Klamt A.; Schüürmann G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799–805. 10.1039/P29930000799. DOI

Bühl M.; Reimann C.; Pantazis D. A.; Bredow T.; Neese F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2008, 4, 1449–1459. 10.1021/ct800172j. PubMed DOI

Vícha J.; Patzschke M.; Marek R. A Relativistic DFT Methodology for Calculating the Structures and NMR Chemical Shifts of Octahedral Platinum and Iridium Complexes. Phys. Chem. Chem. Phys. 2013, 15, 7740–7754. 10.1039/c3cp44440f. PubMed DOI

Vícha J.; Novotný J.; Straka M.; Repisky M.; Ruud K.; Komorovsky S.; Marek R. Structure, Solvent, and Relativistic Effects on the NMR Chemical Shifts in Square-Planar Transition-Metal Complexes: Assessment of DFT Approaches. Phys. Chem. Chem. Phys. 2015, 17, 24944–24955. 10.1039/C5CP04214C. PubMed DOI

Jeremias L.; Novotný J.; Repisky M.; Komorovsky S.; Marek R. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorg. Chem. 2018, 57, 8748–8759. 10.1021/acs.inorgchem.8b00073. PubMed DOI

Vícha J.; Novotný J.; Komorovsky S.; Straka M.; Kaupp M.; Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020, 120, 7065–7103. 10.1021/acs.chemrev.9b00785. PubMed DOI

van Lenthe E.; Snijders J. G.; Baerends E. J. The Zero-order Regular Approximation for Relativistic Effects: The Effect of Spin–Orbit Coupling in Closed Shell Molecules. J. Chem. Phys. 1996, 105, 6505–6516. 10.1063/1.472460. DOI

Autschbach J.; Pritchard B. Calculation of Molecular G-Tensors Using the Zeroth-Order Regular Approximation and Density Functional Theory: Expectation Value versus Linear Response Approaches. Theor. Chem. Acc. 2011, 129, 453–466. 10.1007/s00214-010-0880-x. DOI

Baerends E. J.; Ziegler T.; Atkins A. J.; Autschbach J.; Baseggio O.; Bashford D.; Bérces A.; Bickelhaupt F. M.; Bo C.; Boerrigter P. M.; Cavallo L.; Daul C.; Chong D. P.; Chulhai D. V.; Deng L.; Dickson R. M.; Dieterich J. M.; Ellis D. E.; van Faassen M.; Fan L.. ADF, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com, 2019.

Haase P. A. B.; Repisky M.; Komorovsky S.; Bendix J.; Sauer S. P. A. Relativistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido Complexes: [ReF6]2– and [IrF6]2–. Chem. - Eur. J. 2018, 24, 5124–5133. 10.1002/chem.201882068. PubMed DOI PMC

Bora P. L.; Novotný J.; Ruud K.; Komorovsky S.; Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J. Chem. Theory Comput. 2019, 15, 201–214. 10.1021/acs.jctc.8b00914. PubMed DOI

Gendron F.; Sharkas K.; Autschbach J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. J. Phys. Chem. Lett. 2015, 6, 2183–2188. 10.1021/acs.jpclett.5b00932. PubMed DOI

Dyall K. G. Relativistic Double-Zeta, Triple-Zeta, and Quadruple-Zeta Basis Sets for the 4d Elements Y–Cd. Theor. Chem. Acc. 2007, 117, 483–489. 10.1007/s00214-006-0174-5. PubMed DOI

Jensen F. The Basis Set Convergence of Spin-Spin Coupling Constants Calculated by Density Functional Methods. J. Chem. Theory Comput. 2006, 2, 1360–1369. 10.1021/ct600166u. PubMed DOI

Repisky M.; Komorovsky S.; Malkin V.; Malkina O. L.; Kaupp M.; Ruud K.; Bast R.; Ekstrom U.; Kadek M.; Knecht S.; Konecny L.; Malkin E.; Malkin Ondík I.. Relativistic Spectroscopy DFT Program ReSpect, Developer Version 5.2.0, 2020. PubMed

Álvarez-Moreno M.; de Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55, 95–103. 10.1021/ci500593j. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...