Mechanisms of Ligand Hyperfine Coupling in Transition-Metal Complexes: σ and π Transmission Pathways
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38690843
PubMed Central
PMC11094796
DOI
10.1021/acs.inorgchem.3c04425
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Theoretical interpretation of hyperfine interactions was pioneered in the 1950s-1960s by the seminal works of McConnell, Karplus, and others for organic radicals and by Watson and Freeman for transition-metal (TM) complexes. In this work, we investigate a series of octahedral Ru(III) complexes with aromatic ligands to understand the mechanism of transmission of the spin density from the d-orbital of the metal to the s-orbitals of the ligand atoms. Spin densities and spin populations underlying ligand hyperfine couplings are analyzed in terms of π-conjugative or σ-hyperconjugative delocalization vs spin polarization based on symmetry considerations and restricted open-shell vs unrestricted wave function analysis. The transmission of spin density is shown to be most efficient in the case of symmetry-allowed π-conjugative delocalization, but when the π-conjugation is partially or fully symmetry-forbidden, it can be surpassed by σ-hyperconjugative delocalization. Despite a lower spin population of the ligand in σ-hyperconjugative transmission, the hyperfine couplings can be larger because of the direct involvement of the ligand s-orbitals in this delocalization pathway. We demonstrate a quantitative correlation between the hyperfine couplings of aromatic ligand atoms and the characteristics of the metal-ligand bond modulated by the trans substituent, a hyperfine trans effect.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Zobrazit více v PubMed
Wertz J. E.; Bolton J. R.. Electron Spin Resonance: Elementary Theory and Practical Applications; McGraw-Hill, 1972.
Symons M. C. R.Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy; Van Nostrand Reinhold Inc., U.S.: New York, 1978.
Atherton N. M.Principles of Electron Spin Resonance; Ellis Horwood, 1993.
Weil J. A.; Bolton J. R.. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons, 2007.
Abragam A.; Bleaney B.. Electron Paramagnetic Resonance of Transition Ions; Oxford Classic Texts in the Physical Sciences; Oxford University Press: Oxford, NY, 2012.
Munzarová M. L.9.13 - Electron Paramagnetic Resonance A2 - Poeppelmeier, Jan ReedijkKenneth. In Comprehensive Inorganic Chemistry II, 2 nd ed.; Elsevier: Amsterdam, 2013; pp. 359–380..
Jeschke G. Q. V. E. Quo vadis EPR?. J. Magn. Reson. 2019, 306, 36–41. 10.1016/j.jmr.2019.07.008. PubMed DOI
Möbius K. Primary Processes in Photosynthesis: What Do We Learn from High-Field EPR Spectroscopy?. Chem. Soc. Rev. 2000, 29 (2), 129–139. 10.1039/a706426h. DOI
Drescher M.EPR in Protein Science: Intrinsically Disordered Proteins. In EPR Spectroscopy, Drescher M.; Jeschke G., Eds.; Springer: Berlin Heidelberg: Berlin, Heidelberg, 2011; Vol. 321, pp. 91–119.. 10.1007/128_2011 PubMed DOI
Jasniewski A.; Hu Y.; Ribbe M. W.. Electron Paramagnetic Resonance Spectroscopy of Metalloproteins. In Metalloproteins, Hu Y., Ed.; Methods in Molecular Biology; Springer New York: New York, NY, 2019; Vol. 1876; pp. 197–21110.1007/978-1-4939-8864-8. PubMed DOI
Sahu I. D.; Lorigan G. A. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020, 10 (5), 763.10.3390/biom10050763. PubMed DOI PMC
Wang B.; Fielding A. J.; Dryfe R. A. W. Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. J. Phys. Chem. C 2019, 123 (36), 22556–22563. 10.1021/acs.jpcc.9b04292. DOI
Carl P. J.; Larsen S. C. EPR Study of Copper-Exchanged Zeolites: Effects of Correlated g - and A -Strain, Si/Al Ratio, and Parent Zeolite. J. Phys. Chem. B 2000, 104 (28), 6568–6575. 10.1021/jp000015j. DOI
Munzarová M. L.; Kubáček P.; Kaupp M. Mechanisms of EPR Hyperfine Coupling in Transition Metal Complexes. J. Am. Chem. Soc. 2000, 122 (48), 11900–11913. 10.1021/ja002062v. DOI
Mabbs F. E.; Collison D.. Electron Paramagnetic Resonance of d Transition Metal Compounds; Elsevier, 2013.
Cano J.; Ruiz E.; Alvarez S.; Verdaguer M. Spin Density Distribution in Transition Metal Complexes: Some Thoughts and Hints. Comments Inorg. Chem. 1998, 20 (1), 27–56. 10.1080/02603599808032749. DOI
Kaupp M.; Köhler F. H. Combining NMR Spectroscopy and Quantum Chemistry as Tools to Quantify Spin Density Distributions in Molecular Magnetic Compounds. Coord. Chem. Rev. 2009, 253 (19), 2376–2386. 10.1016/j.ccr.2008.12.020. DOI
Bertini I.; Luchinat C.; Parigi G.; Ravera E.. NMR of Paramagnetic Molecules, 2nd ed.; Elsevier Science, 2016.
Pell A. J.; Pintacuda G.; Grey C. P. Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. 10.1016/j.pnmrs.2018.05.001. PubMed DOI
Lang L.; Ravera E.; Parigi G.; Luchinat C.; Neese F. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J. Phys. Chem. Lett. 2020, 11 (20), 8735–8744. 10.1021/acs.jpclett.0c02462. PubMed DOI PMC
Bertini I.; Luchinat C.; Parigi G. Magnetic Susceptibility in Paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 40 (3), 249–273. 10.1016/S0079-6565(02)00002-X. DOI
Bora P. L.; Novotný J.; Ruud K.; Komorovsky S.; Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J. Chem. Theory Comput. 2019, 15 (1), 201–214. 10.1021/acs.jctc.8b00914. PubMed DOI
Gendron F.; Sharkas K.; Autschbach J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. J. Phys. Chem. Lett. 2015, 6 (12), 2183–2188. 10.1021/acs.jpclett.5b00932. PubMed DOI
Sergentu D.-C.; Gendron F.; Autschbach J. Similar Ligand–Metal Bonding for Transition Metals and Actinides? 5f1 U(C7H7)2–versus 3dn Metallocenes. Chem. Sci. 2018, 9 (29), 6292–6306. 10.1039/C7SC05373H. PubMed DOI PMC
Novotný J.; Přichystal D.; Sojka M.; Komorovsky S.; Necas M.; Marek R. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorg. Chem. 2018, 57 (2), 641–652. 10.1021/acs.inorgchem.7b02440. PubMed DOI
Lang L.; Ravera E.; Parigi G.; Luchinat C.; Neese F. Theoretical Analysis of the Long-Distance Limit of NMR Chemical Shieldings. J. Chem. Phys. 2022, 156 (15), 154115.10.1063/5.0088162. PubMed DOI
Novotný J.; Chyba J.; Hruzíková A.; Pikulová P.; Kursit A.; Knor M.; Marková K.; Marek J.; Jurček P.; Jurček O.; et al. Flipping Hosts in Hyperfine Fields of Paramagnetic Guests. Cell Rep. Phys. Sci. 2023, 4 (7), 101461.10.1016/j.xcrp.2023.101461. DOI
Karplus M.; Fraenkel G. K. Theoretical Interpretation of Carbon-13 Hyperfine Interactions in Electron Spin Resonance Spectra. J. Chem. Phys. 1961, 35 (4), 1312–1323. 10.1063/1.1732044. DOI
Lazdins D.; Karplus M. Spin Delocalization in the Allyl and Ethyl Radicals. J. Chem. Phys. 2004, 44 (4), 1600–1611. 10.1063/1.1726898. DOI
Colpa J. P.; de Boer E. Hyperfine Coupling Constants of CH2 Protons in Paramagnetic Aromatic Systems. Mol. Phys. 1964, 7 (4), 333–348. 10.1080/00268976300101111. DOI
De Boer E.; Colpa J. P. Signs of Spin Densities and Vibronic Interactions in 1- and 1,4-Alkyl-Substituted Benzene Anions. J. Phys. Chem. 1967, 71 (1), 21–28. 10.1021/j100860a004. DOI
Freeman A. J.; Watson R. E. Contribution of Spin Polarization to Transferred Hyperfine Effects in Iron-Series Fluorides. J. Appl. Phys. 1963, 34 (4), 1032–1032. 10.1063/1.1729356. DOI
Fernandez B.; Joergensen P.; Byberg J.; Olsen J.; Helgaker T.; Jensen H. J. A. Spin Polarization in Restricted Electronic Structure Theory: Multiconfiguration Self-consistent-field Calculations of Hyperfine Coupling Constants. J. Chem. Phys. 1992, 97 (5), 3412–3419. 10.1063/1.462977. DOI
Rinkevicius Z.; Telyatnyk L.; Vahtras O.; Ågren H. Density Functional Theory for Hyperfine Coupling Constants with the Restricted-Unrestricted Approach. J. Chem. Phys. 2004, 121 (16), 7614–7623. 10.1063/1.1799013. PubMed DOI
Novotný J.; Sojka M.; Komorovsky S.; NečNečAs M.; Marek R. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016, 138 (27), 8432–8445. 10.1021/jacs.6b02749. PubMed DOI
Jeremias L.; Novotný J.; Repisky M.; Komorovsky S.; Marek R. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorg. Chem. 2018, 57 (15), 8748–8759. 10.1021/acs.inorgchem.8b00073. PubMed DOI
Chyba J.; Hruzíková A.; Knor M.; Pikulová P.; Marková K.; Novotný J.; Marek R. Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands. Inorg. Chem. 2023, 62 (8), 3381–3394. 10.1021/acs.inorgchem.2c03282. PubMed DOI PMC
Mulliken R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23 (10), 1833–1840. 10.1063/1.1740588. DOI
Löwdin P.-O. On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys. 2004, 18 (3), 365–375. 10.1063/1.1747632. DOI
Fleming I.Molecular Orbitals and Organic Chemical Reactions; Wiley: Hoboken, N.J, 2010.
Alabugin I. V.; dos Passos Gomes G.; Abdo M. A. Hyperconjugation. WIREs Comput. Mol. Sci. 2019, 9 (2), e138910.1002/wcms.1389. DOI
Martin B.; Autschbach J. Kohn–Sham Calculations of NMR Shifts for Paramagnetic 3d Metal Complexes: Protocols, Delocalization Error, and the Curious Amide Proton Shifts of a High-Spin Iron(II) Macrocycle Complex. Phys. Chem. Chem. Phys. 2016, 18 (31), 21051–21068. 10.1039/C5CP07667F. PubMed DOI
Bondì L.; Garden A. L.; Totti F.; Jerabek P.; Brooker S. Quantitative Assessment of Ligand Substituent Effects on σ- and π-Contributions to Fe–N Bonds in Spin Crossover FeII Complexes. Chem. – Eur. J. 2022, 28 (22), e20210431410.1002/chem.202104314. PubMed DOI PMC
Ranieri D.; Privitera A.; Santanni F.; Urbanska K.; Strachan G. J.; Twamley B.; Salvadori E.; Liao Y.-K.; Chiesa M.; Senge M. O.; et al. A Heterometallic Porphyrin Dimer as a Potential Quantum Gate: Magneto-Structural Correlations and Spin Coherence Properties. Angew. Chem. 2023, 135 (48), e20231293610.1002/ange.202312936. PubMed DOI
Szczuka C.; Eichel R.-A.; Granwehr J. Gauging the Importance of Structural Parameters for Hyperfine Coupling Constants in Organic Radicals. RSC Adv. 2023, 13 (21), 14565–14574. 10.1039/D3RA02476H. PubMed DOI PMC
Fradera X.; Austen M. A.; Bader R. F. W. The Lewis Model and Beyond. J. Phys. Chem. A 1999, 103 (2), 304–314. 10.1021/jp983362q. DOI
Foroutan-Nejad C.; Shahbazian S.; Marek R. Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths. Chem. - Eur. J. 2014, 20 (32), 10140–10152. 10.1002/chem.201402177. PubMed DOI
Frenking G.; Matthias Bickelhaupt F.. The EDA Perspective of Chemical Bonding. In The Chemical Bond, Frenking G.; Shaik S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2014; pp. 121–157.. DOI: 10.1002/9783527664696.ch4. DOI
Hartley F. R. The Cis- and Trans-Effects of Ligands. Chem. Soc. Rev. 1973, 2 (2), 163–179. 10.1039/cs9730200163. DOI
Coe B. J.; Glenwright S. J. Trans-Effects in Octahedral Transition Metal Complexes. Coord. Chem. Rev. 2000, 203 (1), 5–80. 10.1016/S0010-8545(99)00184-8. DOI
Koide S.; Duval E. Long-Range Spin—Spin Interaction between Nuclei in the Saturated Compounds. J. Chem. Phys. 1964, 41 (2), 315–320. 10.1063/1.1725869. DOI
Rastrelli F.; Bagno A. Predicting the NMR Spectra of Paramagnetic Molecules by DFT: Application to Organic Free Radicals and Transition-Metal Complexes. Chem. – Eur. J. 2009, 15 (32), 7990–8004. 10.1002/chem.200802443. PubMed DOI
Griffith J. S.; Orgel L. E. Ligand-Field Theory. Q. Rev. Chem. Soc. 1957, 11 (4), 381.10.1039/qr9571100381. DOI
Deeth R. J.Ligand Field Theory. In Comprehensive Coordination Chemistry II; Elsevier, 2003; pp. 439–442.. DOI: 10.1016/B0-08-043748-6/01108-7. DOI
Hoffmann R.; Alvarez S.; Mealli C.; Falceto A.; Cahill T. J.; Zeng T.; Manca G. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields. Chem. Rev. 2016, 116 (14), 8173–8192. 10.1021/acs.chemrev.6b00251. PubMed DOI
Quagliano J. V.; Schubert L. The Trans Effect in Complex Inorganic Compounds. Chem. Rev. 1952, 50 (2), 201–260. 10.1021/cr60156a001. DOI
Vícha J.; Novotný J.; Komorovsky S.; Straka M.; Kaupp M.; Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020, 120 (15), 7065–7103. 10.1021/acs.chemrev.9b00785. PubMed DOI
Sava G.; Pacor S.; Mestroni G.; Alessio E. Na[Trans-RuCl4(DMSO)Im], a Metal Complex of Ruthenium with Antimetastatic Properties. Clin. Exp. Metastasis 1992, 10, 4.10.1007/BF00133563. PubMed DOI
Alessio E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 2017 (12), 1549–1560. 10.1002/ejic.201600986. DOI
Hartinger C. G.; Jakupec M. A.; Zorbas-Seifried S.; Groessl M.; Egger A.; Berger W.; Zorbas H.; Dyson P. J.; Keppler B. K. KP1019, A New Redox-Active Anticancer Agent – Preclinical Development and Results of a Clinical Phase I Study in Tumor Patients. Chem. Biodivers 2008, 5 (10), 2140–2155. 10.1002/cbdv.200890195. PubMed DOI
Mjos K. D.; Orvig C. Metallodrugs in Medicinal Inorganic Chemistry. Chem. Rev. 2014, 114 (8), 4540–4563. 10.1021/cr400460s. PubMed DOI
TURBOMOLE V7.2 2017 A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH. http://www.turbomole.com.
Vicha J.; Patzschke M.; Marek R. A Relativistic DFT Methodology for Calculating the Structures and NMR Chemical Shifts of Octahedral Platinum and Iridium Complexes. Phys. Chem. Chem. Phys. 2013, 15 (20), 7740–7754. 10.1039/c3cp44440f. PubMed DOI
Vícha J.; Novotný J.; Straka M.; Repisky M.; Ruud K.; Komorovsky S.; Marek R. Structure, Solvent, and Relativistic Effects on the NMR Chemical Shifts in Square-Planar Transition-Metal Complexes: Assessment of DFT Approaches. Phys. Chem. Chem. Phys. 2015, 17 (38), 24944–24955. 10.1039/C5CP04214C. PubMed DOI
Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297.10.1039/b508541a. PubMed DOI
Andrae D.; Häußermann U.; Dolg M.; Stoll H.; Preuß H. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77 (2), 123–141. 10.1007/BF01114537. DOI
Neese F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73–78. 10.1002/wcms.81. DOI
Baerends E. J.; Ziegler T.; Atkins A. J.; Autschbach J.; Baseggio O.; Bashford D.; Bérces A.; Bickelhaupt F. M.; Bo C.; Boerrigter P. M., et al.ADF2019; SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2019. http://www.scm.com.
Mitoraj M.; Michalak A. Natural Orbitals for Chemical Valence as Descriptors of Chemical Bonding in Transition Metal Complexes. J. Mol. Model 2007, 13 (2), 347–355. 10.1007/s00894-006-0149-4. PubMed DOI
Mitoraj M. P.; Zhu H.; Michalak A.; Ziegler T. On the Origin of the Trans-Influence in Square Planar D8-Complexes: A Theoretical Study. Int. J. Quantum Chem. 2009, 109 (14), 3379–3386. 10.1002/qua.21910. DOI
Keith T. A.AIMAll (Version 19.10.12), 2014.
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H., et al.Gaussian 09; Gaussian, Inc., 2016.
Álvarez-Moreno M.; de Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform. J. Chem. Inf. Model 2015, 55 (1), 95–103. 10.1021/ci500593j. PubMed DOI