Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38687879
PubMed Central
PMC11112740
DOI
10.1021/acs.accounts.3c00786
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
ConspectusMagnetic resonance techniques represent a fundamental class of spectroscopic methods used in physics, chemistry, biology, and medicine. Electron paramagnetic resonance (EPR) is an extremely powerful technique for characterizing systems with an open-shell electronic nature, whereas nuclear magnetic resonance (NMR) has traditionally been used to investigate diamagnetic (closed-shell) systems. However, these two techniques are tightly connected by the electron-nucleus hyperfine interaction operating in paramagnetic (open-shell) systems. Hyperfine interaction of the nuclear spin with unpaired electron(s) induces large temperature-dependent shifts of nuclear resonance frequencies that are designated as hyperfine NMR shifts (δHF).Three fundamental physical mechanisms shape the total hyperfine interaction: Fermi-contact, paramagnetic spin-orbit, and spin-dipolar. The corresponding hyperfine NMR contributions can be interpreted in terms of through-bond and through-space effects. In this Account, we provide an elemental theory behind the hyperfine interaction and NMR shifts and describe recent progress in understanding the structural and electronic principles underlying individual hyperfine terms.The Fermi-contact (FC) mechanism reflects the propagation of electron-spin density throughout the molecule and is proportional to the spin density at the nuclear position. As the imbalance in spin density can be thought of as originating at the paramagnetic metal center and being propagated to the observed nucleus via chemical bonds, FC is an excellent indicator of the bond character. The paramagnetic spin-orbit (PSO) mechanism originates in the orbital current density generated by the spin-orbit coupling interaction at the metal center. The PSO mechanism of the ligand NMR shift then reflects the transmission of the spin polarization through bonds, similar to the FC mechanism, but it also makes a substantial through-space contribution in long-range situations. In contrast, the spin-dipolar (SD) mechanism is relatively unimportant at short-range with significant spin polarization on the spectator atom. The PSO and SD mechanisms combine at long-range to form the so-called pseudocontact shift, traditionally used as a structural and dynamics probe in paramagnetic NMR (pNMR). Note that the PSO and SD terms both contribute to the isotropic NMR shift only at the relativistic spin-orbit level of theory.We demonstrate the advantages of calculating and analyzing the NMR shifts at relativistic two- and four-component levels of theory and present analytical tools and approaches based on perturbation theory. We show that paramagnetic NMR effects can be interpreted by spin-delocalization and spin-polarization mechanisms related to chemical bond concepts of electron conjugation in π-space and hyperconjugation in σ-space in the framework of the molecular orbital (MO) theory. Further, we discuss the effects of environment (supramolecular interactions, solvent, and crystal packing) and demonstrate applications of hyperfine shifts in determining the structure of paramagnetic Ru(III) compounds and their supramolecular host-guest complexes with macrocycles.In conclusion, we provide a short overview of possible pNMR applications in the analysis of spectra and electronic structure and perspectives in this field for a general chemical audience.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 CZ 625 00 Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 CZ 625 00 Brno Czechia
See more in PubMed
Novotný J.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016, 138 (27), 8432–8445. 10.1021/jacs.6b02749. PubMed DOI
Novotný J.; Jeremias L.; Nimax P.; Komorovsky S.; Heinmaa I.; Marek R. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorg. Chem. 2021, 60 (13), 9368–9377. 10.1021/acs.inorgchem.1c00204. PubMed DOI PMC
Bora P. L.; Novotný J.; Ruud K.; Komorovsky S.; Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J. Chem. Theory Comput. 2019, 15 (1), 201–214. 10.1021/acs.jctc.8b00914. PubMed DOI
Novotný J.; Chyba J.; Hruzíková A.; Pikulová P.; Kursit A.; Knor M.; Marková K.; Marek J.; Jurček P.; Jurček O.; Marek R. Flipping Hosts in Hyperfine Fields of Paramagnetic Guests. Cell Rep. Phys. Sci. 2023, 4 (7), 10146110.1016/j.xcrp.2023.101461. DOI
Autschbach J. The Calculation of NMR Parameters in Transition Metal Complexes. Principles and Applications of Density Functional Theory in Inorganic Chemistry I 2004, 112, 1–48. 10.1007/b97936. DOI
Bühl M.NMR of Transition Metal Compounds. In Calculation of NMR and EPR Parameters; John Wiley & Sons, Ltd., 2004; pp 421–431.10.1002/3527601678.ch26. DOI
Vícha J.; Novotný J.; Komorovsky S.; Straka M.; Kaupp M.; Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020, 120 (15), 7065–7103. 10.1021/acs.chemrev.9b00785. PubMed DOI
Bertini I.; Luchinat C.; Parigi G.. Solution NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models; Current Methods in Inorganic Chemistry, Vol. 2; Elsevier Science: Amsterdam, 2016.
Pell A. J.; Pintacuda G.; Grey C. P. Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. 10.1016/j.pnmrs.2018.05.001. PubMed DOI
Koppe J.; Pell A. J. Structure Determination and Refinement of Paramagnetic Materials by Solid-State NMR. ACS Phys. Chem. Au 2023, 3 (5), 419–433. 10.1021/acsphyschemau.3c00019. PubMed DOI PMC
Moon S.; Patchkovskii S.. First-Principles Calculations of Paramagnetic NMR Shifts. In Calculation of NMR and EPR Parameters; Kaupp M., Bühl M., Malkin V., Eds.; Wiley-VCH Verlag, 2004; pp 325–338.
Komorovsky S.Relativistic Theory of EPR and (p)NMR. In Comprehensive Computational Chemistry; Elsevier, 2024; pp 280–314.10.1016/B978-0-12-821978-2.00098-2. DOI
Van den Heuvel W.; Soncini A. NMR Chemical Shift as Analytical Derivative of the Helmholtz Free Energy. J. Chem. Phys. 2013, 138 (5), 05411310.1063/1.4789398. PubMed DOI
Van den Heuvel W.; Soncini A. NMR Chemical Shift in an Electronic State with Arbitrary Degeneracy. Phys. Rev. Lett. 2012, 109 (7), 07300110.1103/PhysRevLett.109.073001. PubMed DOI
Soncini A.; Van den Heuvel W. Communication: Paramagnetic NMR Chemical Shift in a Spin State Subject to Zero-Field Splitting. J. Chem. Phys. 2013, 138 (2), 02110310.1063/1.4775809. PubMed DOI
Vaara J.; Rouf S. A.; Mareš J. Magnetic Couplings in the Chemical Shift of Paramagnetic NMR. J. Chem. Theory Comput. 2015, 11 (10), 4840–4849. 10.1021/acs.jctc.5b00656. PubMed DOI
Rouf S. A.; Mareš J.; Vaara J. 1H Chemical Shifts in Paramagnetic Co(II) Pyrazolylborate Complexes: A First-Principles Study. J. Chem. Theory Comput. 2015, 11 (4), 1683–1691. 10.1021/acs.jctc.5b00193. PubMed DOI
Gendron F.; Sharkas K.; Autschbach J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. J. Phys. Chem. Lett. 2015, 6 (12), 2183–2188. 10.1021/acs.jpclett.5b00932. PubMed DOI
Gendron F.; Autschbach J. Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides. J. Chem. Theory Comput. 2016, 12 (11), 5309–5321. 10.1021/acs.jctc.6b00462. PubMed DOI
Martin B.; Autschbach J. Kohn–Sham Calculations of NMR Shifts for Paramagnetic 3d Metal Complexes: Protocols, Delocalization Error, and the Curious Amide Proton Shifts of a High-Spin Iron(II) Macrocycle Complex. Phys. Chem. Chem. Phys. 2016, 18 (31), 21051–21068. 10.1039/C5CP07667F. PubMed DOI
Rouf S. A.; Mareš J.; Vaara J. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems. J. Chem. Theory Comput. 2017, 13 (8), 3731–3745. 10.1021/acs.jctc.7b00168. PubMed DOI
Vaara J.Chemical Shift in Paramagnetic Systems. In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems; Elsevier, 2013; pp 41–67.10.1016/B978-0-444-59411-2.00003-4. DOI
Novotný J.; Přichystal D.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorg. Chem. 2018, 57 (2), 641–652. 10.1021/acs.inorgchem.7b02440. PubMed DOI
Chyba J.; Novák M.; Munzarová P.; Novotný J.; Marek R. Through-Space Paramagnetic NMR Effects in Host–Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018, 57 (15), 8735–8747. 10.1021/acs.inorgchem.7b03233. PubMed DOI
Haase P. A. B.; Repisky M.; Komorovsky S.; Bendix J.; Sauer S. P. A. Revalistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido Complexes: [ReF6]2– and [IrF6]2–. Chem.—Eur. J. 2018, 24 (20), 5124–5133. 10.1002/chem.201882068. PubMed DOI PMC
Malkina O. L.; Malkin V. G. Visualization of Nuclear Spin-Spin Coupling Pathways by Real-Space Functions. Angew. Chem., Int. Ed. 2003, 42 (36), 4335–4338. 10.1002/anie.200351713. PubMed DOI
Komorovsky S.; Jakubowska K.; Świder P.; Repisky M.; Jaszuński M. NMR Spin–Spin Coupling Constants Derived from Relativistic Four-Component DFT Theory—Analysis and Visualization. J. Phys. Chem. A 2020, 124 (25), 5157–5169. 10.1021/acs.jpca.0c02807. PubMed DOI
Gordon W. Der Strom der Diracschen Elektronentheorie. Z. Physik 1928, 50 (9), 630–632. 10.1007/BF01327881. DOI
Szmytkowski R. Larmor Diamagnetism and Van Vleck Paramagnetism in Relativistic Quantum Theory: The Gordon Decomposition Approach. Phys. Rev. A 2002, 65 (3), 03211210.1103/PhysRevA.65.032112. DOI
Bertini I.; Luchinat C.; Parigi G. Magnetic Susceptibility in Paramagnetic NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 40 (3), 249–273. 10.1016/S0079-6565(02)00002-X. DOI
Komorovsky S.; Repisky M.; Ruud K.; Malkina O. L.; Malkin V. G. Four-Component Relativistic Density Functional Theory Calculations of NMR Shielding Tensors for Paramagnetic Systems. J. Phys. Chem. A 2013, 117 (51), 14209–14219. 10.1021/jp408389h. PubMed DOI
Lang L.; Ravera E.; Parigi G.; Luchinat C.; Neese F. Theoretical Analysis of the Long-Distance Limit of NMR Chemical Shieldings. J. Chem. Phys. 2022, 156 (15), 15411510.1063/5.0088162. PubMed DOI
Lang L.; Ravera E.; Parigi G.; Luchinat C.; Neese F. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J. Phys. Chem. Lett. 2020, 11 (20), 8735–8744. 10.1021/acs.jpclett.0c02462. PubMed DOI PMC
Repisky M.; Komorovsky S.; Malkin E.; Malkina O. L.; Malkin V. G. Relativistic Four-Component Calculations of Electronic g-Tensors in the Matrix Dirac–Kohn–Sham Framework. Chem. Phys. Lett. 2010, 488 (1), 94–97. 10.1016/j.cplett.2010.01.077. DOI
Malkin E.; Repisky M.; Komorovsky S.; Mach P.; Malkina O. L.; Malkin V. G. Effects of Finite Size Nuclei in Relativistic Four-Component Calculations of Hyperfine Structure. J. Chem. Phys. 2011, 134 (4), 04411110.1063/1.3526263. PubMed DOI
Kurland R. J.; McGarvey B. R. Isotropic NMR Shifts in Transition Metal Complexes: The Calculation of the Fermi Contact and Pseudocontact Terms. J. Magn. Reson. 1970, 2 (3), 286–301. 10.1016/0022-2364(70)90100-9. DOI
McConnell H. M.; Robertson R. E. Isotropic Nuclear Resonance Shifts. J. Chem. Phys. 1958, 29 (6), 1361–1365. 10.1063/1.1744723. DOI
Pikulová P.; Misenkova D.; Marek R.; Komorovsky S.; Novotný J. Quadratic Spin–Orbit Mechanism of the Electronic g-Tensor. J. Chem. Theory Comput. 2023, 19, 1765.10.1021/acs.jctc.2c01213. PubMed DOI PMC
Kaupp M.; Köhler F. H. Combining NMR Spectroscopy and Quantum Chemistry as Tools to Quantify Spin Density Distributions in Molecular Magnetic Compounds. Coord. Chem. Rev. 2009, 253 (19), 2376–2386. 10.1016/j.ccr.2008.12.020. DOI
Novotny J.; Munzarová M.; Marek R. Mechanisms of Ligand Hyperfine Coupling in Transition-Metal Complexes: σ and π Transmission Pathways. Inorg. Chem. 2024, 63, in press.10.1021/acs.inorgchem.3c04425. PubMed DOI PMC
Malkina O. L.; Lemken F.; Asher J. R.; Hierso J.-C.; Bűhl M.; Malkin V. G. Transmission of Spin-Polarization by π-Orbitals: An Approach to Assessing Its Effect on NMR Spin–Spin Coupling and EPR Hyperfine Structure. Phys. Chem. Chem. Phys. 2022, 24 (39), 24039–24049. 10.1039/D2CP03295C. PubMed DOI
Munzarová M.; Kaupp M. A Critical Validation of Density Functional and Coupled-Cluster Approaches for the Calculation of EPR Hyperfine Coupling Constants in Transition Metal Complexes. J. Phys. Chem. A 1999, 103 (48), 9966–9983. 10.1021/jp992303p. DOI
Munzarová M. L.; Kubáček P.; Kaupp M. Mechanisms of EPR Hyperfine Coupling in Transition Metal Complexes. J. Am. Chem. Soc. 2000, 122 (48), 11900–11913. 10.1021/ja002062v. DOI
Duval E.; Koide S. Interaction entre spins nucleaire a grande distance. Phys. Lett. 1964, 8 (5), 314.10.1016/S0031-9163(64)80013-5. DOI
Marek R.; Křístková A.; Maliňáková K.; Toušek J.; Marek J.; Hocek M.; Malkina O. L.; Malkin V. G. Interpretation of Indirect Nuclear Spin–Spin Couplings in Isomers of Adenine: Novel Approach to Analyze Coupling Electron Deformation Density Using Localized Molecular Orbitals. J. Phys. Chem. A 2010, 114 (24), 6689–6700. 10.1021/jp102186r. PubMed DOI
Müntener T.; Joss D.; Häussinger D.; Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem. Rev. 2022, 122 (10), 9422–9467. 10.1021/acs.chemrev.1c00796. PubMed DOI
Parker D.; Suturina E. A.; Kuprov I.; Chilton N. F. How the Ligand Field in Lanthanide Coordination Complexes Determines Magnetic Susceptibility Anisotropy, Paramagnetic NMR Shift, and Relaxation Behavior. Acc. Chem. Res. 2020, 53 (8), 1520–1534. 10.1021/acs.accounts.0c00275. PubMed DOI PMC
Malali S.; Chyba J.; Knor M.; Horní M.; Nečas M.; Novotný J.; Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal–Ligand Bond and Host–Guest Binding with Cucurbit[7]Uril. Inorg. Chem. 2020, 59 (14), 10185–10196. 10.1021/acs.inorgchem.0c01328. PubMed DOI
Mareš J.; Vaara J. Ab Initio Paramagnetic NMR Shifts via Point-Dipole Approximation in a Large Magnetic-Anisotropy Co(ii) Complex. Phys. Chem. Chem. Phys. 2018, 20 (35), 22547–22555. 10.1039/C8CP04123G. PubMed DOI
Foroutan-Nejad C.; Shahbazian S.; Marek R. Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths. Chem.—Eur. J. 2014, 20 (32), 10140–10152. 10.1002/chem.201402177. PubMed DOI
Rastrelli F.; Bagno A. Predicting the 1H and 13C NMR Spectra of Paramagnetic Ru(III) Complexes by DFT. Magn. Reson. Chem. 2010, 48, S132–141. 10.1002/mrc.2666. PubMed DOI
Chyba J.; Hruzíková A.; Knor M.; Pikulová P.; Marková K.; Novotný J.; Marek R. Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands. Inorg. Chem. 2023, 62 (8), 3381–3394. 10.1021/acs.inorgchem.2c03282. PubMed DOI PMC