Quadratic Spin-Orbit Mechanism of the Electronic g-Tensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36896579
PubMed Central
PMC10061661
DOI
10.1021/acs.jctc.2c01213
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding how the electronic g-tensor is linked to the electronic structure is desirable for the correct interpretation of electron paramagnetic resonance spectra. For heavy-element compounds with large spin-orbit (SO) effects, this is still not completely clear. We report our investigation of quadratic SO contributions to the g-shift in heavy transition metal complexes. We implemented third-order perturbation theory in order to analyze the contributions arising from frontier molecular spin orbitals (MSOs). We show that the dominant quadratic SO term─spin-Zeeman (SO2/SZ)─generally makes a negative contribution to the g-shift, irrespective of the particular electronic configuration or molecular symmetry. We further analyze how the SO2/SZ contribution adds to or subtracts from the linear orbital-Zeeman (SO/OZ) contribution to the individual principal components of the g-tensor. Our study suggests that the SO2/SZ mechanism decreases the anisotropy of the g-tensor in early transition metal complexes and increases it in late transition metal complexes. Finally, we apply MSO analysis to the investigation of g-tensor trends in a set of closely related Ir and Rh pincer complexes and evaluate the influence of different chemical factors (the nuclear charge of the central atom and the terminal ligand) on the magnitudes of the g-shifts. We expect our conclusions to aid the understanding of spectra in magnetic resonance investigations of heavy transition metal compounds.
CEITEC─Central European Institute of Technology Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Zobrazit více v PubMed
Mabbs F. E.; Collison D.. Electron Paramagnetic Resonance of d Transition Metal Compounds, 1st ed.; Elsevier Science: Amsterdam, 2013.
Autschbach J. Relativistic Calculations of Magnetic Resonance Parameters: Background and Some Recent Developments. Philos. Trans. R. Soc., A 2014, 372, 20120489.10.1098/rsta.2012.0489. PubMed DOI
Vícha J.; Novotný J.; Komorovsky S.; Straka M.; Kaupp M.; Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020, 120, 7065–7103. 10.1021/acs.chemrev.9b00785. PubMed DOI
Abragam A.; Bleaney B.. Electron Paramagnetic Resonance of Transition Ions. Oxford Classic Texts in the Physical Sciences; Oxford University Press: Oxford, New York, 2012.
Chibotaru L. F.Ab Initio Methodology for Pseudospin Hamiltonians of Anisotropic Magnetic Complexes. Advances in Chemical Physics; John Wiley & Sons, Ltd, 2013; pp 397–519.
Komorovsky S.Relativistic Effects and The Chemistry of Heavy Elements: Relativistic Theory of EPR and (p)NMR, accepted; Ruud K., Ed.; Elsevier, 2022.
Novotný J.; Vícha J.; Bora P. L.; Repisky M.; Straka M.; Komorovsky S.; Marek R. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling. J. Chem. Theory Comput. 2017, 13, 3586–3601. 10.1021/acs.jctc.7b00444. PubMed DOI
Vícha J.; Komorovsky S.; Repisky M.; Marek R.; Straka M. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained. J. Chem. Theory Comput. 2018, 14, 3025–3039. 10.1021/acs.jctc.8b00144. PubMed DOI
Cuyacot B. J. R.; Novotný J.; Berger R. J. F.; Komorovsky S.; Marek R. Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom. Chem.—Eur. J. 2022, 28, e20220027710.1002/chem.202200277. PubMed DOI
Vaara J.; Ruud K.; Vahtras O.; Ågren H.; Jokisaari J. Quadratic Response Calculations of the Electronic Spin-Orbit Contribution to Nuclear Shielding Tensors. J. Chem. Phys. 1998, 109, 1212–1222. 10.1063/1.476672. DOI
Vaara J.; Ruud K.; Vahtras O. Correlated Response Calculations of the Spin-Orbit Interaction Contribution to Nuclear Spin-Spin Couplings. J. Comput. Chem. 1999, 20, 1314–1327. 10.1002/(SICI)1096-987X(199909)20:12<1314::AID-JCC12>3.0.CO;2-0. DOI
Malkina O. L.; Vaara J.; Schimmelpfennig B.; Munzarová M.; Malkin V. G.; Kaupp M. Density Functional Calculations of Electronic G-Tensors Using Spin–Orbit Pseudopotentials and Mean-Field All-Electron Spin–Orbit Operators. J. Am. Chem. Soc. 2000, 122, 9206–9218. 10.1021/ja000984s. DOI
Hrobárik P.; Repiský M.; Komorovský S.; Hrobáriková V.; Kaupp M. Assessment of Higher-Order Spin–Orbit Effects on Electronic g-Tensors of D1 Transition-Metal Complexes by Relativistic Two- and Four-Component Methods. Theor. Chem. Acc. 2011, 129, 715–725. 10.1007/s00214-011-0951-7. DOI
Gohr S.; Hrobárik P.; Repiský M.; Komorovský S.; Ruud K.; Kaupp M. Four-Component Relativistic DFT Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin-Orbit Effects. J. Phys. Chem. A 2015, 119, 12892–12905. 10.1021/acs.jpca.5b10996. PubMed DOI
Bora P. L.; Novotný J.; Ruud K.; Komorovsky S.; Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J. Chem. Theory Comput. 2019, 15, 201–214. 10.1021/acs.jctc.8b00914. PubMed DOI
Schreckenbach G.; Ziegler T. Calculation of the G-Tensor of Electron Paramagnetic Resonance Spectroscopy Using Gauge-Including Atomic Orbitals and Density Functional Theory. J. Phys. Chem. A 1997, 101, 3388–3399. 10.1021/jp963060t. DOI
Malkin I.; Malkina O. L.; Malkin V. G.; Kaupp M. Relativistic Two-Component Calculations of Electronic g-Tensors That Include Spin Polarization. J. Chem. Phys. 2005, 123, 244103.10.1063/1.2135290. PubMed DOI
Repisky M.; Komorovsky S.; Malkin E.; Malkina O. L.; Malkin V. G. Relativistic Four-Component Calculations of Electronic g-Tensors in the Matrix Dirac–Kohn–Sham Framework. Chem. Phys. Lett. 2010, 488, 94–97. 10.1016/j.cplett.2010.01.077. DOI
Wodyński A.; Kaupp M. Density Functional Calculations of Electron Paramagnetic Resonance G- and Hyperfine-Coupling Tensors Using the Exact Two-Component (X2C) Transformation and Efficient Approximations to the Two-Electron Spin–Orbit Terms. J. Phys. Chem. A 2019, 123, 5660–5672. 10.1021/acs.jpca.9b03979. PubMed DOI
Franzke Y. J.; Yu J. M. Quasi-Relativistic Calculation of EPR g Tensors with Derivatives of the Decoupling Transformation, Gauge-Including Atomic Orbitals, and Magnetic Balance. J. Chem. Theory Comput. 2022, 18, 2246–2266. 10.1021/acs.jctc.1c01175. PubMed DOI
Misenkova D.; Lemken F.; Repisky M.; Noga J.; Malkina O. L.; Komorovsky S. The Four-Component DFT Method for the Calculation of the EPR g-Tensor Using a Restricted Magnetically Balanced Basis and London Atomic Orbitals. J. Chem. Phys. 2022, 157, 164114.10.1063/5.0103928. PubMed DOI
Bolvin H. An Alternative Approach to the G-Matrix: Theory and Applications. ChemPhysChem 2006, 7, 1575–1589. 10.1002/cphc.200600051. PubMed DOI
Ganyushin D.; Neese F. A Fully Variational Spin-Orbit Coupled Complete Active Space Self-Consistent Field Approach: Application to Electron Paramagnetic Resonance g-Tensors. J. Chem. Phys. 2013, 138, 104113.10.1063/1.4793736. PubMed DOI
Gendron F.; Pritchard B.; Bolvin H.; Autschbach J. Magnetic Resonance Properties of Actinyl Carbonate Complexes and Plutonyl(VI)-Tris-Nitrate. Inorg. Chem. 2014, 53, 8577–8592. 10.1021/ic501168a. PubMed DOI
Hernández D. P.; Bolvin H. Magnetic Properties of a Fourfold Degenerate State: Np4+ Ion Diluted in Cs2ZrCl6 Crystal. J. Electron Spectrosc. Relat. Phenom. 2014, 194, 74–80. 10.1016/j.elspec.2014.03.002. DOI
Singh S. K.; Atanasov M.; Neese F. Challenges in Multireference Perturbation Theory for the Calculations of the G-Tensor of First-Row Transition-Metal Complexes. J. Chem. Theory Comput. 2018, 14, 4662–4677. 10.1021/acs.jctc.8b00513. PubMed DOI
Patchkovskii S.; Schreckenbach G.. Calculation of EPR G-Tensors with Density Functional Theory. Calculation of NMR and EPR Parameters; John Wiley & Sons, Ltd, 2004; pp 505–532.
Rinkevicius Z.; de Almeida K. J.; Oprea C. I.; Vahtras O.; Ågren H.; Ruud K. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects. J. Chem. Theory Comput. 2008, 4, 1810–1828. 10.1021/ct800053f. PubMed DOI
Manninen P.; Vaara J.; Ruud K. Perturbational Relativistic Theory of Electron Spin Resonance G-Tensor. J. Chem. Phys. 2004, 121, 1258–1265. 10.1063/1.1759321. PubMed DOI
Pastvova D.Development and Implementation of New Theoretical Tools for Interpretation of the NMR and EPR Spectra of Compounds Containing Heavy Elements; Comenius University: Bratislava, 2019. https://opac.crzp.sk/?fn=detailBiblioForm&sid=BB60B769A491B65146FA32F2173F.
Gerloch M.; McMeeking R. F. Paramagnetic Properties of Unsymmetrical Transition-Metal Complexes. J. Chem. Soc., Dalton Trans. 1975, 22, 2443–2451. 10.1039/DT9750002443. DOI
Scheibel M. G.; Abbenseth J.; Kinauer M.; Heinemann F. W.; Würtele C.; de Bruin B.; Schneider S. Homolytic N-H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species. Inorg. Chem. 2015, 54, 9290–9302. 10.1021/acs.inorgchem.5b00829. PubMed DOI PMC
Scheibel M. G.; Askevold B.; Heinemann F. W.; Reijerse E. J.; de Bruin B.; Schneider S. Closed-Shell and Open-Shell Square-Planar Iridium Nitrido Complexes. Nat. Chem. 2012, 4, 552–558. 10.1038/nchem.1368. PubMed DOI
Meiners J.; Scheibel M. G.; Lemée-Cailleau M.-H.; Mason S. A.; Boeddinghaus M. B.; Fässler T. F.; Herdtweck E.; Khusniyarov M. M.; Schneider S. Square-Planar Iridium(II) and Iridium(III) Amido Complexes Stabilized by a PNP Pincer Ligand. Angew. Chem., Int. Ed. 2011, 50, 8184–8187. 10.1002/anie.201102795. PubMed DOI
Delony D.; Kinauer M.; Diefenbach M.; Demeshko S.; Würtele C.; Holthausen M. C.; Schneider S. A Terminal Iridium Oxo Complex with a Triplet Ground State. Angew. Chem., Int. Ed. 2019, 58, 10971–10974. 10.1002/anie.201905325. PubMed DOI
Scheibel M. G.; Wu Y.; Stückl A. C.; Krause L.; Carl E.; Stalke D.; de Bruin B.; Schneider S. Synthesis and Reactivity of a Transient, Terminal Nitrido Complex of Rhodium. J. Am. Chem. Soc. 2013, 135, 17719–17722. 10.1021/ja409764j. PubMed DOI
Adamo C.; Barone V. Toward Chemical Accuracy in the Computation of NMR Shieldings: The PBE0 Model. Chem. Phys. Lett. 1998, 298, 113–119. 10.1016/S0009-2614(98)01201-9. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16; Gaussian, Inc., 2016.
Repisky M.; Komorovsky S.; Malkin V.; Malkina O. L.; Kaupp M.; Ruud K.; Bast R.; Ekstrom U.; Kadek M.; Knecht S.; Konecny L.; Malkin E.; Malkin Ondík I.. Relativistic Spectroscopy DFT Program ReSpect, Developer version 5.2.0; AIP Publishing, 2020. PubMed
Repisky M.; Komorovsky S.; Kadek M.; Konecny L.; Ekström U.; Malkin E.; Kaupp M.; Ruud K.; Malkina O. L.; Malkin V. G. ReSpect: Relativistic Spectroscopy DFT Program Package. J. Chem. Phys. 2020, 152, 184101.10.1063/5.0005094. PubMed DOI
Dyall K. G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y-Cd. Theor. Chem. Acc. 2007, 117, 483–489. 10.1007/s00214-006-0174-5. DOI
Huzinaga S. Gaussian-Type Functions for Polyatomic Systems. I. J. Chem. Phys. 1965, 42, 1293–1302. 10.1063/1.1696113. DOI
Schindler M.; Kutzelnigg W. Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities. II. Application to Some Simple Molecules. J. Chem. Phys. 1982, 76, 1919–1933. 10.1063/1.443165. DOI
Komorovsky S.; Cherry P. J.; Repisky M. Four-Component Relativistic Time-Dependent Density-Functional Theory Using a Stable Noncollinear DFT Ansatz Applicable to Both Closed- and Open-Shell Systems. J. Chem. Phys. 2019, 151, 184111.10.1063/1.5121713. PubMed DOI
Remigio R. D.; Repisky M.; Komorovsky S.; Hrobarik P.; Frediani L.; Ruud K. Four-Component Relativistic Density Functional Theory with the Polarisable Continuum Model: Application to EPR Parameters and Paramagnetic NMR Shifts. Mol. Phys. 2017, 115, 214–227. 10.1080/00268976.2016.1239846. DOI
Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. https://www.chemcraftprog.com.
Olsen J.; Jo/rgensen P. Linear and Nonlinear Response Functions for an Exact State and for an MCSCF State. J. Chem. Phys. 1985, 82, 3235–3264. 10.1063/1.448223. DOI
Christiansen O.; Jørgensen P.; Hättig C. Response Functions from Fourier Component Variational Perturbation Theory Applied to a Time-Averaged Quasienergy. Int. J. Quantum Chem. 1998, 68, 1–52. 10.1002/(sici)1097-461x(1998)68:1<1::aid-qua1>3.0.co;2-z. DOI
Álvarez-Moreno M.; de Graaf C.; López N.; Maseras F.; Poblet J. M.; Bo C. Managing the Computational Chemistry Big Data Problem: The IoChem-BD Platform. J. Chem. Inf. Model. 2015, 55, 95–103. 10.1021/ci500593j. PubMed DOI