Cyclodextrin-Based Metal-Organic Framework as an Application Platform for Bioactive Ruthenium(III) Complexes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40408128
PubMed Central
PMC12152939
DOI
10.1021/acs.inorgchem.5c00813
Knihovny.cz E-zdroje
- MeSH
- buňky Hep G2 MeSH
- cyklodextriny * chemie MeSH
- gama-cyklodextriny * chemie MeSH
- komplexní sloučeniny * chemie farmakologie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- porézní koordinační polymery * chemie farmakologie chemická syntéza MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- ruthenium * chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklodextriny * MeSH
- gama-cyklodextriny * MeSH
- komplexní sloučeniny * MeSH
- porézní koordinační polymery * MeSH
- protinádorové látky * MeSH
- ruthenium * MeSH
Ruthenium(III) complexes are promising anticancer metallodrugs because of their antimetastatic (migrastatic) potential and significantly lower host toxicity than generally used platinum metallodrugs. On the other hand, the ruthenium(III) complexes generally show low solubility and stability in an aqueous environment but exhibit some toxicity associated with unspecific delivery. For these reasons, numerous ongoing studies deal with their encapsulation into various delivery systems to maximize their therapeutic efficacy. One of these systems can also be crystals of nontoxic metal-organic frameworks (MOFs). In this work, we studied incorporation of a bioactive ruthenium(III) complex (RuC) inside MOFs derived from γ-cyclodextrin (γ-CD) and biocompatible potassium ions, forming CD-MOF-1. Viability studies in vitro were carried out using spheroids of human hepatoblastoma cell line HepG2. These studies revealed that the RuC-CD-MOF-1 system provides effective cancer cell suppression through slow gradual release over a longer period (>10 days) while reducing acute cytotoxic effects associated with naked RuC. This combination was defined for further development and optimization as a drug-delivery platform for metallodrugs.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
College of Chemistry Central China Normal University 152 Luoyu Road Wuhan 430079 China
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
Department of Chemistry University of Jyvaskyla P O Box 35 40014 Jyväskylä Finland
Department of Natural Drugs Faculty of Pharmacy Masaryk University 61200 Brno Czechia
RECETOX Faculty of Science Masaryk University Kotlářská 2 61137 Brno Czechia
Zobrazit více v PubMed
He S., Wu L., Li X., Sun H., Xiong T., Liu J., Huang C., Xu H., Sun H., Chen W., Gref R., Zhang J.. Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B. 2021;11(8):2362–2395. doi: 10.1016/j.apsb.2021.03.019. PubMed DOI PMC
Zhou H.-C. J., Kitagawa S.. Metal-Organic Frameworks (MOFs) Chem. Soc. Rev. 2014;43(16):5415–5418. doi: 10.1039/C4CS90059F. PubMed DOI
Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M.. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341(6149):1230444. doi: 10.1126/science.1230444. PubMed DOI
Huang H., Sato H., Aida T.. Crystalline Nanochannels with Pendant Azobenzene Groups: Steric or Polar Effects on Gas Adsorption and Diffusion? J. Am. Chem. Soc. 2017;139(26):8784–8787. doi: 10.1021/jacs.7b02979. PubMed DOI
Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. Ö., Snurr R. Q., O’Keeffe M., Kim J., Yaghi O. M.. Ultrahigh Porosity in Metal-Organic Frameworks. Science. 2010;329(5990):424–428. doi: 10.1126/science.1192160. PubMed DOI
Kumar P., Pournara A., Kim K.-H., Bansal V., Rapti S., Manos M. J.. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Progress Mater. Sci. 2017;86:25–74. doi: 10.1016/j.pmatsci.2017.01.002. DOI
Dalstein O., Gkaniatsou E., Sicard C., Sel O., Perrot H., Serre C., Boissière C., Faustini M.. Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors. Angew. Chem., Int. Ed. 2017;56(45):14011–14015. doi: 10.1002/anie.201706745. PubMed DOI
Dhakshinamoorthy A., Asiri A. M., Garcia H.. Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catal. 2017;7(4):2896–2919. doi: 10.1021/acscatal.6b03386. DOI
Chen C.-X., Wei Z.-W., Jiang J.-J., Zheng S.-P., Wang H.-P., Qiu Q.-F., Cao C.-C., Fenske D., Su C.-Y.. Dynamic Spacer Installation for Multirole Metal-Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. J. Am. Chem. Soc. 2017;139(17):6034–6037. doi: 10.1021/jacs.7b01320. PubMed DOI
Moharramnejad M., Ehsani A., Shahi M., Gharanli S., Saremi H., Malekshah R. E., Basmenj Z. S., Salmani S., Mohammadi M.. MOF as Nanoscale Drug Delivery Devices: Synthesis and Recent Progress in Biomedical Applications. J. Drug Del. Sci. Technol. 2023;81:104285. doi: 10.1016/j.jddst.2023.104285. DOI
Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J.-S., Hwang Y. K., Marsaud V., Bories P.-N., Cynober L., Gil S., Férey G., Couvreur P., Gref R.. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010;9(2):172–178. doi: 10.1038/nmat2608. PubMed DOI
Panda J., Tripathy S. P., Dash S., Ray A., Behera P., Subudhi S., Parida K.. Inner Transition Metal-Modulated Metal Organic Frameworks (IT-MOFs) and Their Derived Nanomaterials: A Strategic Approach towards Stupendous Photocatalysis. Nanoscale. 2023;15(17):7640–7675. doi: 10.1039/D3NR00274H. PubMed DOI
Krüger M., Albat M., Inge A. K., Stock N.. Investigation of the Effect of Polar Functional Groups on the Crystal Structures of Indium MOFs. CrystEngComm. 2017;19(31):4622–4628. doi: 10.1039/C7CE01067B. DOI
Yeganegi S., Sokhanvaran V.. Adsorption of Hydrogen and Methane on Intrinsic and Alkali Metal Cations-Doped Zn2(NDC)2(diPyTz) Metal-Organic Framework Using GCMC Simulations. Adsorption. 2016;22(2):277–285. doi: 10.1007/s10450-016-9765-1. DOI
Wei L.-Q., Lu J.-Y., Li Q.-Q., Zhou Y., Tang L.-L., Li F.-Y.. A Porous Ca-MOF with Nano-Sized {Ca 11} as Building Unit: Structure, Drug Loading and Release Properties. Inorg. Chem. Commun. 2017;78:43–47. doi: 10.1016/j.inoche.2017.02.010. DOI
Xue Z., Jiang J., Ma M.-G., Li M.-F., Mu T.. Gadolinium-Based Metal-Organic Framework as an Efficient and Heterogeneous Catalyst To Activate Epoxides for Cycloaddition of CO2 and Alcoholysis. ACS Sustainable Chem. Eng. 2017;5(3):2623–2631. doi: 10.1021/acssuschemeng.6b02972. DOI
Sargazi G., Afzali D., Mostafavi A.. A Novel Synthesis of a New Thorium (IV) Metal Organic Framework Nanostructure with Well Controllable Procedure through Ultrasound Assisted Reverse Micelle Method. Ultrason. Sonochem. 2018;41:234–251. doi: 10.1016/j.ultsonch.2017.09.046. PubMed DOI
Singh N., Qutub S., Khashab N. M.. Biocompatibility and Biodegradability of Metal Organic Frameworks for Biomedical Applications. J. Mater. Chem. B. 2021;9(30):5925–5934. doi: 10.1039/D1TB01044A. PubMed DOI
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R.. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116(9):5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Matea C., Mocan T., Tabaran F., Pop T., Mosteanu O., Puia C., Iancu C., Mocan L.. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017;12:5421–5431. doi: 10.2147/IJN.S138624. PubMed DOI PMC
Sayed E., Haj-Ahmad R., Ruparelia K., Arshad M. S., Chang M.-W., Ahmad Z.. Porous Inorganic Drug Delivery Systemsa Review. AAPS PharmSciTech. 2017;18(5):1507–1525. doi: 10.1208/s12249-017-0740-2. PubMed DOI
Abdelaziz H. M., Gaber M., Abd-Elwakil M. M., Mabrouk M. T., Elgohary M. M., Kamel N. M., Kabary D. M., Freag M. S., Samaha M. W., Mortada S. M., Elkhodairy K. A., Fang J.-Y., Elzoghby A. O.. Inhalable Particulate Drug Delivery Systems for Lung Cancer Therapy: Nanoparticles, Microparticles, Nanocomposites and Nanoaggregates. J. Controlled Release. 2018;269:374–392. doi: 10.1016/j.jconrel.2017.11.036. PubMed DOI
Wuttke S., Lismont M., Escudero A., Rungtaweevoranit B., Parak W. J.. Positioning Metal-Organic Framework Nanoparticles within the Context of Drug Delivery - A Comparison with Mesoporous Silica Nanoparticles and Dendrimers. Biomaterials. 2017;123:172–183. doi: 10.1016/j.biomaterials.2017.01.025. PubMed DOI
Li Z., Ye E., David, Lakshminarayanan R., Loh X. J.. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small. 2016;12(35):4782–4806. doi: 10.1002/smll.201601129. PubMed DOI
He Y., Zhang W., Guo T., Zhang G., Qin W., Zhang L., Wang C., Zhu W., Yang M., Hu X., Singh V., Wu L., Gref R., Zhang J.. Drug Nanoclusters Formed in Confined Nano-Cages of CD-MOF: Dramatic Enhancement of Solubility and Bioavailability of Azilsartan. Acta Pharm. Sin. B. 2019;9(1):97–106. doi: 10.1016/j.apsb.2018.09.003. PubMed DOI PMC
Hartlieb K. J., Ferris D. P., Holcroft J. M., Kandela I., Stern C. L., Nassar M. S., Botros Y. Y., Stoddart J. F.. Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies. Mol. Pharmaceutics. 2017;14(5):1831–1839. doi: 10.1021/acs.molpharmaceut.7b00168. PubMed DOI
Bonnefoy J., Legrand A., Quadrelli E. A., Canivet J., Farrusseng D.. Enantiopure Peptide-Functionalized Metal-Organic Frameworks. J. Am. Chem. Soc. 2015;137(29):9409–9416. doi: 10.1021/jacs.5b05327. PubMed DOI
Chu C., Su M., Zhu J., Li D., Cheng H., Chen X., Liu G.. Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics. 2019;9(11):3134–3149. doi: 10.7150/thno.33539. PubMed DOI PMC
Marson Armando R. A., Abuçafy M. P., Graminha A. E., Silva R. S. D., Frem R. C. G.. Ru-90@bio-MOF-1: A Ruthenium(II) Metallodrug Occluded in Porous Zn-Based MOF as a Strategy to Develop Anticancer Agents. J. Solid State Chem. 2021;297:122081. doi: 10.1016/j.jssc.2021.122081. DOI
Lee Y.-R., Kim J., Ahn W.-S.. Synthesis of Metal-Organic Frameworks: A Mini Review. Korean J. Chem. Eng. 2013;30(9):1667–1680. doi: 10.1007/s11814-013-0140-6. DOI
Chen J., Cheng F., Luo D., Huang J., Ouyang J., Nezamzadeh-Ejhieh A., Khan M. S., Liu J., Peng Y.. Recent Advances in Ti-Based MOFs in Biomedical Applications. Dalton Trans. 2022;51(39):14817–14832. doi: 10.1039/D2DT02470E. PubMed DOI
Sukatis F. F., Wee S. Y., Aris A. Z.. Potential of Biocompatible Calcium-Based Metal-Organic Frameworks for the Removal of Endocrine-Disrupting Compounds in Aqueous Environments. Water Res. 2022;218:118406. doi: 10.1016/j.watres.2022.118406. PubMed DOI
Navarro-Sánchez J., Mullor-Ruíz I., Popescu C., Santamaría-Pérez D., Segura A., Errandonea D., González-Platas J., Martí-Gastaldo C.. Peptide Metal-Organic Frameworks under Pressure: Flexible Linkers for Cooperative Compression. Dalton Trans. 2018;47(31):10654–10659. doi: 10.1039/C8DT01765D. PubMed DOI
Nadar S. S., Vaidya L., Maurya S., Rathod V. K.. Polysaccharide Based Metal Organic Frameworks (Polysaccharide-MOF): A Review. Coord. Chem. Rev. 2019;396:1–21. doi: 10.1016/j.ccr.2019.05.011. DOI
Wang H.-S., Wang Y.-H., Ding Y.. Development of Biological Metal-Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020;2(9):3788–3797. doi: 10.1039/D0NA00557F. PubMed DOI PMC
Smaldone R. A., Forgan R. S., Furukawa H., Gassensmith J. J., Slawin A. M. Z., Yaghi O. M., Stoddart J. F.. Metal-Organic Frameworks from Edible Natural Products. Angew. Chem., Int. Ed. 2010;49(46):8630–8634. doi: 10.1002/anie.201002343. PubMed DOI
Roy I., Stoddart J. F.. Cyclodextrin Metal-Organic Frameworks and Their Applications. Acc. Chem. Res. 2021;54(6):1440–1453. doi: 10.1021/acs.accounts.0c00695. PubMed DOI
Jurček O., Puttreddy R., Topić F., Jurček P., Zarabadi-Poor P., Schröder H. V., Marek R., Rissanen K.. Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis(2,3-Di- O -Methyl)-α-Cyclodextrin. Crystal Growth Des. 2020;20(6):4193–4199. doi: 10.1021/acs.cgd.0c00532. DOI
Sarabia-Vallejo Á., Caja M. D. M., Olives A. I., Martín M. A., Menéndez J. C.. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics. 2023;15(9):2345. doi: 10.3390/pharmaceutics15092345. PubMed DOI PMC
Carneiro S., Costa Duarte F., Heimfarth L., Siqueira Quintans J., Quintans-Júnior L., Veiga Júnior V., Neves De Lima Á.. Cyclodextrin-Drug Inclusion Complexes: In Vivo and In Vitro Approaches. Int. J. Mol. Sci. 2019;20(3):642. doi: 10.3390/ijms20030642. PubMed DOI PMC
Forgan R. S., Smaldone R. A., Gassensmith J. J., Furukawa H., Cordes D. B., Li Q., Wilmer C. E., Botros Y. Y., Snurr R. Q., Slawin A. M. Z., Stoddart J. F.. Nanoporous Carbohydrate Metal-Organic Frameworks. J. Am. Chem. Soc. 2012;134(1):406–417. doi: 10.1021/ja208224f. PubMed DOI
Li X., Guo T., Lachmanski L., Manoli F., Menendez-Miranda M., Manet I., Guo Z., Wu L., Zhang J., Gref R.. Cyclodextrin-Based Metal-Organic Frameworks Particles as Efficient Carriers for Lansoprazole: Study of Morphology and Chemical Composition of Individual Particles. Int. J. Pharm. 2017;531(2):424–432. doi: 10.1016/j.ijpharm.2017.05.056. PubMed DOI
Zhang W., Guo T., Wang C., He Y., Zhang X., Li G., Chen Y., Li J., Lin Y., Xu X., Wu L., Zhang S., Zhang J.. MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan. Pharm. Res. 2019;36(8):117. doi: 10.1007/s11095-019-2650-3. PubMed DOI
Puskás I., Szente L., Szocs L., Fenyvesi É.. Recent List of Cyclodextrin-Containing Drug Products. Period. Polytech. Chem. Eng. 2023;67(1):11–17. doi: 10.3311/PPch.21222. DOI
Dhiman P., Bhatia M.. Pharmaceutical Applications of Cyclodextrins and Their Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020;98(3–4):171–186. doi: 10.1007/s10847-020-01029-3. DOI
Sojka M., Chyba J., Paul S. S., Wawrocka K., Hönigová K., Cuyacot B. J. R., Castro A. C., Vaculovič T., Marek J., Repisky M., Masařík M., Novotný J., Marek R.. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg. Chem. 2021;60(23):17911–17925. doi: 10.1021/acs.inorgchem.1c02467. PubMed DOI
Paul S. S., Novotný J., Jakubec J., Petrláková K., Jurček P., Rašková K., Kuchynka M., Masařík M., Kulhánek P., Marek R.. Revealing the Effect of Host-Guest Complementarity in Supramolecular Monofunctional Platinum(ii) Drugs. Inorg. Chem. Front. 2024;11(23):8510–8525. doi: 10.1039/D4QI02012J. DOI
Novotný J., Chyba J., Hruzíková A., Pikulová P., Kursit A., Knor M., Marková K., Marek J., Jurček P., Jurček O., Marek R.. Flipping Hosts in Hyperfine Fields of Paramagnetic Guests. Cell Rep. Phys. Sci. 2023;4(7):101461. doi: 10.1016/j.xcrp.2023.101461. DOI
Chyba J., Novák M., Munzarová P., Novotný J., Marek R.. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018;57(15):8735–8747. doi: 10.1021/acs.inorgchem.7b03233. PubMed DOI
Sava G., Bergamo A.. Ruthenium-Based Compounds and Tumour Growth Control (Review) Int. J. Oncol. 2000;17(2):353–418. doi: 10.3892/ijo.17.2.353. PubMed DOI
Bacac M., Hotze A. C. G., Schilden K. V. D., Haasnoot J. G., Pacor S., Alessio E., Sava G., Reedijk J.. The Hydrolysis of the Anti-Cancer Ruthenium Complex NAMI-A Affects Its DNA Binding and Antimetastatic Activity: An NMR Evaluation. J. Inorg. Biochem. 2004;98(2):402–412. doi: 10.1016/j.jinorgbio.2003.12.003. PubMed DOI
Novotný J., Sojka M., Komorovsky S., Nečas M., Marek R.. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016;138(27):8432–8445. doi: 10.1021/jacs.6b02749. PubMed DOI
Webb M. I., Chard R. A., Al-Jobory Y. M., Jones M. R., Wong E. W. Y., Walsby C. J.. Pyridine Analogues of the Antimetastatic Ru(III) Complex NAMI-A Targeting Non-Covalent Interactions with Albumin. Inorg. Chem. 2012;51(2):954–966. doi: 10.1021/ic202029e. PubMed DOI
Schneider M., Grossi M. F., Gadara D., Spáčil Z., Babica P., Bláha L.. Treatment of Cylindrospermopsin by Hydroxyl and Sulfate Radicals: Does Degradation Equal Detoxification? J. Hazard. Mater. 2022;424:127447. doi: 10.1016/j.jhazmat.2021.127447. PubMed DOI
Chowdhury R. R., Grosso M. F., Gadara D. C., Spáčil Z., Vidová V., Sovadinová I., Babica P.. Cyanotoxin Cylindrospermopsin Disrupts Lipid Homeostasis and Metabolism in a 3D in Vitro Model of the Human Liver. Chem. Biol. Interact. 2024;397:111046. doi: 10.1016/j.cbi.2024.111046. PubMed DOI
Chyba J., Hruzíková A., Knor M., Pikulová P., Marková K., Novotný J., Marek R.. Nature of NMR Shifts in Paramagnetic Octahedral Ru(III) Complexes with Axial Pyridine-Based Ligands. Inorg. Chem. 2023;62(8):3381–3394. doi: 10.1021/acs.inorgchem.2c03282. PubMed DOI PMC
Novotny J., Komorovsky S., Marek R.. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts. Acc. Chem. Res. 2024;57(10):1467–1477. doi: 10.1021/acs.accounts.3c00786. PubMed DOI PMC
Zhu L., Cheng C., Liu S., Yang L., Han P., Cui T., Zhang Y.. Advancements and Application Prospects of Three-Dimensional Models for Primary Liver Cancer: A Comprehensive Review. Front. Bioeng. Biotechnol. 2023;11:1343177. doi: 10.3389/fbioe.2023.1343177. PubMed DOI PMC
Ayvaz I., Sunay D., Sariyar E., Erdal E., Karagonlar Z. F.. Three-Dimensional Cell Culture Models of Hepatocellular Carcinoma a Review. J. Gastrointest. Canc. 2021;52(4):1294–1308. doi: 10.1007/s12029-021-00772-1. PubMed DOI
Khafaga A. F., Mousa S. A., Aleya L., Abdel-Daim M. M.. Three-Dimensional (3D) Cell Culture: A Valuable Step in Advancing Treatments for Human Hepatocellular Carcinoma. Cancer Cell Int. 2022;22(1):243. doi: 10.1186/s12935-022-02662-3. PubMed DOI PMC
Pastore M., Giachi A., Spínola-Lasso E., Marra F., Raggi C.. Organoids and Spheroids: Advanced in Vitro Models for Liver Cancer Research. Front. Cell Dev. Biol. 2025;12:1536854. doi: 10.3389/fcell.2024.1536854. PubMed DOI PMC
Shahzad K., Asad M., Asiri A. M., Irfan M., Iqbal M. A.. In-Vitro Anticancer Profile of Recent Ruthenium Complexes against Liver Cancer. Rev. Inorg. Chem. 2023;43(1):33–47. doi: 10.1515/revic-2021-0040. DOI
Neves S. P., De Carvalho N. C., Da Silva M. M., Rodrigues A. C. B. C., Bomfim L. M., Dias R. B., Sales C. B. S., Rocha C. A. G., Soares M. B. P., Batista A. A., Bezerra D. P.. Ruthenium Complexes Containing Heterocyclic Thioamidates Trigger Caspase-Mediated Apoptosis Through MAPK Signaling in Human Hepatocellular Carcinoma Cells. Front. Oncol. 2019;9:562. doi: 10.3389/fonc.2019.00562. PubMed DOI PMC
De Carvalho N. C., Neves S. P., Dias R. B., Valverde L. D. F., Sales C. B. S., Rocha C. A. G., Soares M. B. P., Dos Santos E. R., Oliveira R. M. M., Carlos R. M., Nogueira P. C. L., Bezerra D. P.. A Novel Ruthenium Complex with Xanthoxylin Induces S-Phase Arrest and Causes ERK1/2-Mediated Apoptosis in HepG2 Cells through a P53-Independent Pathway. Cell Death Dis. 2018;9(2):79. doi: 10.1038/s41419-017-0104-6. PubMed DOI PMC
Neves S. P., Bomfim L. M., Kataura T., Carvalho S. G., Nogueira M. L., Dias R. B., Valverde L. D. F., Gurgel Rocha C. A., Soares M. B. P., Silva M. M. D., Batista A. A., Korolchuk V. I., Bezerra D. P.. Ruthenium Complex Containing 1,3-Thiazolidine-2-Thione Inhibits Hepatic Cancer Stem Cells by Suppressing Akt/mTOR Signalling and Leading to Apoptotic and Autophagic Cell Death. Biomed. Pharmacother. 2024;177:117059. doi: 10.1016/j.biopha.2024.117059. PubMed DOI
Hanahan D., Weinberg R. A.. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Mizushima N., Komatsu M.. Autophagy: Renovation of Cells and Tissues. Cell. 2011;147(4):728–741. doi: 10.1016/j.cell.2011.10.026. PubMed DOI
Hirschhaeuser F., Menne H., Dittfeld C., West J., Mueller-Klieser W., Kunz-Schughart L. A.. Multicellular Tumor Spheroids: An Underestimated Tool Is Catching up Again. J. Biotechnol. 2010;148(1):3–15. doi: 10.1016/j.jbiotec.2010.01.012. PubMed DOI
Evan G. I., Vousden K. H.. Proliferation, Cell Cycle and Apoptosis in Cancer. Nature. 2001;411(6835):342–348. doi: 10.1038/35077213. PubMed DOI
Prasetyanti P. R., Medema J. P.. Intra-Tumor Heterogeneity from a Cancer Stem Cell Perspective. Mol. Cancer. 2017;16(1):41. doi: 10.1186/s12943-017-0600-4. PubMed DOI PMC
Meacham C. E., Morrison S. J.. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501(7467):328–337. doi: 10.1038/nature12624. PubMed DOI PMC
Pickup M. W., Mouw J. K., Weaver V. M.. The Extracellular Matrix Modulates the Hallmarks of Cancer. EMBO Reports. 2014;15(12):1243–1253. doi: 10.15252/embr.201439246. PubMed DOI PMC
Kanaoujiya R., Meenakshi, Srivastava S., Singh R., Mustafa G.. Recent Advances and Application of Ruthenium Complexes in Tumor Malignancy. Mater. Today Proc. 2023;72:2822–2827. doi: 10.1016/j.matpr.2022.07.098. DOI
Lee S. Y., Kim C. Y., Nam T.-G.. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des., Dev. Ther. 2020;14:5375–5392. doi: 10.2147/DDDT.S275007. PubMed DOI PMC
Thota S., Rodrigues D. A., Crans D. C., Barreiro E. J.. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J. Med. Chem. 2018;61(14):5805–5821. doi: 10.1021/acs.jmedchem.7b01689. PubMed DOI
Cetinbas N., Webb M. I., Dubland J. A., Walsby C. J.. Serum-Protein Interactions with Anticancer Ru(III) Complexes KP1019 and KP418 Characterized by EPR. J. Biol. Inorg. Chem. 2010;15(2):131–145. doi: 10.1007/s00775-009-0578-5. PubMed DOI
Webb M. I., Walsby C. J.. EPR as a Probe of the Intracellular Speciation of Ruthenium(Iii) Anticancer Compounds. Metallomics. 2013;5(12):1624. doi: 10.1039/c3mt00090g. PubMed DOI
Alessio E.. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017;2017(12):1549–1560. doi: 10.1002/ejic.201600986. DOI