Cyclodextrin-Based Metal-Organic Framework as an Application Platform for Bioactive Ruthenium(III) Complexes

. 2025 Jun 09 ; 64 (22) : 10870-10878. [epub] 20250523

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40408128

Ruthenium(III) complexes are promising anticancer metallodrugs because of their antimetastatic (migrastatic) potential and significantly lower host toxicity than generally used platinum metallodrugs. On the other hand, the ruthenium(III) complexes generally show low solubility and stability in an aqueous environment but exhibit some toxicity associated with unspecific delivery. For these reasons, numerous ongoing studies deal with their encapsulation into various delivery systems to maximize their therapeutic efficacy. One of these systems can also be crystals of nontoxic metal-organic frameworks (MOFs). In this work, we studied incorporation of a bioactive ruthenium(III) complex (RuC) inside MOFs derived from γ-cyclodextrin (γ-CD) and biocompatible potassium ions, forming CD-MOF-1. Viability studies in vitro were carried out using spheroids of human hepatoblastoma cell line HepG2. These studies revealed that the RuC-CD-MOF-1 system provides effective cancer cell suppression through slow gradual release over a longer period (>10 days) while reducing acute cytotoxic effects associated with naked RuC. This combination was defined for further development and optimization as a drug-delivery platform for metallodrugs.

Zobrazit více v PubMed

He S., Wu L., Li X., Sun H., Xiong T., Liu J., Huang C., Xu H., Sun H., Chen W., Gref R., Zhang J.. Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B. 2021;11(8):2362–2395. doi: 10.1016/j.apsb.2021.03.019. PubMed DOI PMC

Zhou H.-C. J., Kitagawa S.. Metal-Organic Frameworks (MOFs) Chem. Soc. Rev. 2014;43(16):5415–5418. doi: 10.1039/C4CS90059F. PubMed DOI

Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M.. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341(6149):1230444. doi: 10.1126/science.1230444. PubMed DOI

Huang H., Sato H., Aida T.. Crystalline Nanochannels with Pendant Azobenzene Groups: Steric or Polar Effects on Gas Adsorption and Diffusion? J. Am. Chem. Soc. 2017;139(26):8784–8787. doi: 10.1021/jacs.7b02979. PubMed DOI

Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. Ö., Snurr R. Q., O’Keeffe M., Kim J., Yaghi O. M.. Ultrahigh Porosity in Metal-Organic Frameworks. Science. 2010;329(5990):424–428. doi: 10.1126/science.1192160. PubMed DOI

Kumar P., Pournara A., Kim K.-H., Bansal V., Rapti S., Manos M. J.. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Progress Mater. Sci. 2017;86:25–74. doi: 10.1016/j.pmatsci.2017.01.002. DOI

Dalstein O., Gkaniatsou E., Sicard C., Sel O., Perrot H., Serre C., Boissière C., Faustini M.. Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors. Angew. Chem., Int. Ed. 2017;56(45):14011–14015. doi: 10.1002/anie.201706745. PubMed DOI

Dhakshinamoorthy A., Asiri A. M., Garcia H.. Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catal. 2017;7(4):2896–2919. doi: 10.1021/acscatal.6b03386. DOI

Chen C.-X., Wei Z.-W., Jiang J.-J., Zheng S.-P., Wang H.-P., Qiu Q.-F., Cao C.-C., Fenske D., Su C.-Y.. Dynamic Spacer Installation for Multirole Metal-Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. J. Am. Chem. Soc. 2017;139(17):6034–6037. doi: 10.1021/jacs.7b01320. PubMed DOI

Moharramnejad M., Ehsani A., Shahi M., Gharanli S., Saremi H., Malekshah R. E., Basmenj Z. S., Salmani S., Mohammadi M.. MOF as Nanoscale Drug Delivery Devices: Synthesis and Recent Progress in Biomedical Applications. J. Drug Del. Sci. Technol. 2023;81:104285. doi: 10.1016/j.jddst.2023.104285. DOI

Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J.-S., Hwang Y. K., Marsaud V., Bories P.-N., Cynober L., Gil S., Férey G., Couvreur P., Gref R.. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010;9(2):172–178. doi: 10.1038/nmat2608. PubMed DOI

Panda J., Tripathy S. P., Dash S., Ray A., Behera P., Subudhi S., Parida K.. Inner Transition Metal-Modulated Metal Organic Frameworks (IT-MOFs) and Their Derived Nanomaterials: A Strategic Approach towards Stupendous Photocatalysis. Nanoscale. 2023;15(17):7640–7675. doi: 10.1039/D3NR00274H. PubMed DOI

Krüger M., Albat M., Inge A. K., Stock N.. Investigation of the Effect of Polar Functional Groups on the Crystal Structures of Indium MOFs. CrystEngComm. 2017;19(31):4622–4628. doi: 10.1039/C7CE01067B. DOI

Yeganegi S., Sokhanvaran V.. Adsorption of Hydrogen and Methane on Intrinsic and Alkali Metal Cations-Doped Zn2­(NDC)­2­(diPyTz) Metal-Organic Framework Using GCMC Simulations. Adsorption. 2016;22(2):277–285. doi: 10.1007/s10450-016-9765-1. DOI

Wei L.-Q., Lu J.-Y., Li Q.-Q., Zhou Y., Tang L.-L., Li F.-Y.. A Porous Ca-MOF with Nano-Sized {Ca 11} as Building Unit: Structure, Drug Loading and Release Properties. Inorg. Chem. Commun. 2017;78:43–47. doi: 10.1016/j.inoche.2017.02.010. DOI

Xue Z., Jiang J., Ma M.-G., Li M.-F., Mu T.. Gadolinium-Based Metal-Organic Framework as an Efficient and Heterogeneous Catalyst To Activate Epoxides for Cycloaddition of CO2 and Alcoholysis. ACS Sustainable Chem. Eng. 2017;5(3):2623–2631. doi: 10.1021/acssuschemeng.6b02972. DOI

Sargazi G., Afzali D., Mostafavi A.. A Novel Synthesis of a New Thorium (IV) Metal Organic Framework Nanostructure with Well Controllable Procedure through Ultrasound Assisted Reverse Micelle Method. Ultrason. Sonochem. 2018;41:234–251. doi: 10.1016/j.ultsonch.2017.09.046. PubMed DOI

Singh N., Qutub S., Khashab N. M.. Biocompatibility and Biodegradability of Metal Organic Frameworks for Biomedical Applications. J. Mater. Chem. B. 2021;9(30):5925–5934. doi: 10.1039/D1TB01044A. PubMed DOI

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R.. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116(9):5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Matea C., Mocan T., Tabaran F., Pop T., Mosteanu O., Puia C., Iancu C., Mocan L.. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomed. 2017;12:5421–5431. doi: 10.2147/IJN.S138624. PubMed DOI PMC

Sayed E., Haj-Ahmad R., Ruparelia K., Arshad M. S., Chang M.-W., Ahmad Z.. Porous Inorganic Drug Delivery Systemsa Review. AAPS PharmSciTech. 2017;18(5):1507–1525. doi: 10.1208/s12249-017-0740-2. PubMed DOI

Abdelaziz H. M., Gaber M., Abd-Elwakil M. M., Mabrouk M. T., Elgohary M. M., Kamel N. M., Kabary D. M., Freag M. S., Samaha M. W., Mortada S. M., Elkhodairy K. A., Fang J.-Y., Elzoghby A. O.. Inhalable Particulate Drug Delivery Systems for Lung Cancer Therapy: Nanoparticles, Microparticles, Nanocomposites and Nanoaggregates. J. Controlled Release. 2018;269:374–392. doi: 10.1016/j.jconrel.2017.11.036. PubMed DOI

Wuttke S., Lismont M., Escudero A., Rungtaweevoranit B., Parak W. J.. Positioning Metal-Organic Framework Nanoparticles within the Context of Drug Delivery - A Comparison with Mesoporous Silica Nanoparticles and Dendrimers. Biomaterials. 2017;123:172–183. doi: 10.1016/j.biomaterials.2017.01.025. PubMed DOI

Li Z., Ye E., David, Lakshminarayanan R., Loh X. J.. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small. 2016;12(35):4782–4806. doi: 10.1002/smll.201601129. PubMed DOI

He Y., Zhang W., Guo T., Zhang G., Qin W., Zhang L., Wang C., Zhu W., Yang M., Hu X., Singh V., Wu L., Gref R., Zhang J.. Drug Nanoclusters Formed in Confined Nano-Cages of CD-MOF: Dramatic Enhancement of Solubility and Bioavailability of Azilsartan. Acta Pharm. Sin. B. 2019;9(1):97–106. doi: 10.1016/j.apsb.2018.09.003. PubMed DOI PMC

Hartlieb K. J., Ferris D. P., Holcroft J. M., Kandela I., Stern C. L., Nassar M. S., Botros Y. Y., Stoddart J. F.. Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies. Mol. Pharmaceutics. 2017;14(5):1831–1839. doi: 10.1021/acs.molpharmaceut.7b00168. PubMed DOI

Bonnefoy J., Legrand A., Quadrelli E. A., Canivet J., Farrusseng D.. Enantiopure Peptide-Functionalized Metal-Organic Frameworks. J. Am. Chem. Soc. 2015;137(29):9409–9416. doi: 10.1021/jacs.5b05327. PubMed DOI

Chu C., Su M., Zhu J., Li D., Cheng H., Chen X., Liu G.. Metal-Organic Framework Nanoparticle-Based Biomineralization: A New Strategy toward Cancer Treatment. Theranostics. 2019;9(11):3134–3149. doi: 10.7150/thno.33539. PubMed DOI PMC

Marson Armando R. A., Abuçafy M. P., Graminha A. E., Silva R. S. D., Frem R. C. G.. Ru-90@bio-MOF-1: A Ruthenium­(II) Metallodrug Occluded in Porous Zn-Based MOF as a Strategy to Develop Anticancer Agents. J. Solid State Chem. 2021;297:122081. doi: 10.1016/j.jssc.2021.122081. DOI

Lee Y.-R., Kim J., Ahn W.-S.. Synthesis of Metal-Organic Frameworks: A Mini Review. Korean J. Chem. Eng. 2013;30(9):1667–1680. doi: 10.1007/s11814-013-0140-6. DOI

Chen J., Cheng F., Luo D., Huang J., Ouyang J., Nezamzadeh-Ejhieh A., Khan M. S., Liu J., Peng Y.. Recent Advances in Ti-Based MOFs in Biomedical Applications. Dalton Trans. 2022;51(39):14817–14832. doi: 10.1039/D2DT02470E. PubMed DOI

Sukatis F. F., Wee S. Y., Aris A. Z.. Potential of Biocompatible Calcium-Based Metal-Organic Frameworks for the Removal of Endocrine-Disrupting Compounds in Aqueous Environments. Water Res. 2022;218:118406. doi: 10.1016/j.watres.2022.118406. PubMed DOI

Navarro-Sánchez J., Mullor-Ruíz I., Popescu C., Santamaría-Pérez D., Segura A., Errandonea D., González-Platas J., Martí-Gastaldo C.. Peptide Metal-Organic Frameworks under Pressure: Flexible Linkers for Cooperative Compression. Dalton Trans. 2018;47(31):10654–10659. doi: 10.1039/C8DT01765D. PubMed DOI

Nadar S. S., Vaidya L., Maurya S., Rathod V. K.. Polysaccharide Based Metal Organic Frameworks (Polysaccharide-MOF): A Review. Coord. Chem. Rev. 2019;396:1–21. doi: 10.1016/j.ccr.2019.05.011. DOI

Wang H.-S., Wang Y.-H., Ding Y.. Development of Biological Metal-Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020;2(9):3788–3797. doi: 10.1039/D0NA00557F. PubMed DOI PMC

Smaldone R. A., Forgan R. S., Furukawa H., Gassensmith J. J., Slawin A. M. Z., Yaghi O. M., Stoddart J. F.. Metal-Organic Frameworks from Edible Natural Products. Angew. Chem., Int. Ed. 2010;49(46):8630–8634. doi: 10.1002/anie.201002343. PubMed DOI

Roy I., Stoddart J. F.. Cyclodextrin Metal-Organic Frameworks and Their Applications. Acc. Chem. Res. 2021;54(6):1440–1453. doi: 10.1021/acs.accounts.0c00695. PubMed DOI

Jurček O., Puttreddy R., Topić F., Jurček P., Zarabadi-Poor P., Schröder H. V., Marek R., Rissanen K.. Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis­(2,3-Di- O -Methyl)-α-Cyclodextrin. Crystal Growth Des. 2020;20(6):4193–4199. doi: 10.1021/acs.cgd.0c00532. DOI

Sarabia-Vallejo Á., Caja M. D. M., Olives A. I., Martín M. A., Menéndez J. C.. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics. 2023;15(9):2345. doi: 10.3390/pharmaceutics15092345. PubMed DOI PMC

Carneiro S., Costa Duarte F., Heimfarth L., Siqueira Quintans J., Quintans-Júnior L., Veiga Júnior V., Neves De Lima Á.. Cyclodextrin-Drug Inclusion Complexes: In Vivo and In Vitro Approaches. Int. J. Mol. Sci. 2019;20(3):642. doi: 10.3390/ijms20030642. PubMed DOI PMC

Forgan R. S., Smaldone R. A., Gassensmith J. J., Furukawa H., Cordes D. B., Li Q., Wilmer C. E., Botros Y. Y., Snurr R. Q., Slawin A. M. Z., Stoddart J. F.. Nanoporous Carbohydrate Metal-Organic Frameworks. J. Am. Chem. Soc. 2012;134(1):406–417. doi: 10.1021/ja208224f. PubMed DOI

Li X., Guo T., Lachmanski L., Manoli F., Menendez-Miranda M., Manet I., Guo Z., Wu L., Zhang J., Gref R.. Cyclodextrin-Based Metal-Organic Frameworks Particles as Efficient Carriers for Lansoprazole: Study of Morphology and Chemical Composition of Individual Particles. Int. J. Pharm. 2017;531(2):424–432. doi: 10.1016/j.ijpharm.2017.05.056. PubMed DOI

Zhang W., Guo T., Wang C., He Y., Zhang X., Li G., Chen Y., Li J., Lin Y., Xu X., Wu L., Zhang S., Zhang J.. MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan. Pharm. Res. 2019;36(8):117. doi: 10.1007/s11095-019-2650-3. PubMed DOI

Puskás I., Szente L., Szocs L., Fenyvesi É.. Recent List of Cyclodextrin-Containing Drug Products. Period. Polytech. Chem. Eng. 2023;67(1):11–17. doi: 10.3311/PPch.21222. DOI

Dhiman P., Bhatia M.. Pharmaceutical Applications of Cyclodextrins and Their Derivatives. J. Incl. Phenom. Macrocycl. Chem. 2020;98(3–4):171–186. doi: 10.1007/s10847-020-01029-3. DOI

Sojka M., Chyba J., Paul S. S., Wawrocka K., Hönigová K., Cuyacot B. J. R., Castro A. C., Vaculovič T., Marek J., Repisky M., Masařík M., Novotný J., Marek R.. Supramolecular Coronation of Platinum­(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg. Chem. 2021;60(23):17911–17925. doi: 10.1021/acs.inorgchem.1c02467. PubMed DOI

Paul S. S., Novotný J., Jakubec J., Petrláková K., Jurček P., Rašková K., Kuchynka M., Masařík M., Kulhánek P., Marek R.. Revealing the Effect of Host-Guest Complementarity in Supramolecular Monofunctional Platinum­(ii) Drugs. Inorg. Chem. Front. 2024;11(23):8510–8525. doi: 10.1039/D4QI02012J. DOI

Novotný J., Chyba J., Hruzíková A., Pikulová P., Kursit A., Knor M., Marková K., Marek J., Jurček P., Jurček O., Marek R.. Flipping Hosts in Hyperfine Fields of Paramagnetic Guests. Cell Rep. Phys. Sci. 2023;4(7):101461. doi: 10.1016/j.xcrp.2023.101461. DOI

Chyba J., Novák M., Munzarová P., Novotný J., Marek R.. Through-Space Paramagnetic NMR Effects in Host-Guest Complexes: Potential Ruthenium­(III) Metallodrugs with Macrocyclic Carriers. Inorg. Chem. 2018;57(15):8735–8747. doi: 10.1021/acs.inorgchem.7b03233. PubMed DOI

Sava G., Bergamo A.. Ruthenium-Based Compounds and Tumour Growth Control (Review) Int. J. Oncol. 2000;17(2):353–418. doi: 10.3892/ijo.17.2.353. PubMed DOI

Bacac M., Hotze A. C. G., Schilden K. V. D., Haasnoot J. G., Pacor S., Alessio E., Sava G., Reedijk J.. The Hydrolysis of the Anti-Cancer Ruthenium Complex NAMI-A Affects Its DNA Binding and Antimetastatic Activity: An NMR Evaluation. J. Inorg. Biochem. 2004;98(2):402–412. doi: 10.1016/j.jinorgbio.2003.12.003. PubMed DOI

Novotný J., Sojka M., Komorovsky S., Nečas M., Marek R.. Interpreting the Paramagnetic NMR Spectra of Potential Ru­(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016;138(27):8432–8445. doi: 10.1021/jacs.6b02749. PubMed DOI

Webb M. I., Chard R. A., Al-Jobory Y. M., Jones M. R., Wong E. W. Y., Walsby C. J.. Pyridine Analogues of the Antimetastatic Ru­(III) Complex NAMI-A Targeting Non-Covalent Interactions with Albumin. Inorg. Chem. 2012;51(2):954–966. doi: 10.1021/ic202029e. PubMed DOI

Schneider M., Grossi M. F., Gadara D., Spáčil Z., Babica P., Bláha L.. Treatment of Cylindrospermopsin by Hydroxyl and Sulfate Radicals: Does Degradation Equal Detoxification? J. Hazard. Mater. 2022;424:127447. doi: 10.1016/j.jhazmat.2021.127447. PubMed DOI

Chowdhury R. R., Grosso M. F., Gadara D. C., Spáčil Z., Vidová V., Sovadinová I., Babica P.. Cyanotoxin Cylindrospermopsin Disrupts Lipid Homeostasis and Metabolism in a 3D in Vitro Model of the Human Liver. Chem. Biol. Interact. 2024;397:111046. doi: 10.1016/j.cbi.2024.111046. PubMed DOI

Chyba J., Hruzíková A., Knor M., Pikulová P., Marková K., Novotný J., Marek R.. Nature of NMR Shifts in Paramagnetic Octahedral Ru­(III) Complexes with Axial Pyridine-Based Ligands. Inorg. Chem. 2023;62(8):3381–3394. doi: 10.1021/acs.inorgchem.2c03282. PubMed DOI PMC

Novotny J., Komorovsky S., Marek R.. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts. Acc. Chem. Res. 2024;57(10):1467–1477. doi: 10.1021/acs.accounts.3c00786. PubMed DOI PMC

Zhu L., Cheng C., Liu S., Yang L., Han P., Cui T., Zhang Y.. Advancements and Application Prospects of Three-Dimensional Models for Primary Liver Cancer: A Comprehensive Review. Front. Bioeng. Biotechnol. 2023;11:1343177. doi: 10.3389/fbioe.2023.1343177. PubMed DOI PMC

Ayvaz I., Sunay D., Sariyar E., Erdal E., Karagonlar Z. F.. Three-Dimensional Cell Culture Models of Hepatocellular Carcinoma  a Review. J. Gastrointest. Canc. 2021;52(4):1294–1308. doi: 10.1007/s12029-021-00772-1. PubMed DOI

Khafaga A. F., Mousa S. A., Aleya L., Abdel-Daim M. M.. Three-Dimensional (3D) Cell Culture: A Valuable Step in Advancing Treatments for Human Hepatocellular Carcinoma. Cancer Cell Int. 2022;22(1):243. doi: 10.1186/s12935-022-02662-3. PubMed DOI PMC

Pastore M., Giachi A., Spínola-Lasso E., Marra F., Raggi C.. Organoids and Spheroids: Advanced in Vitro Models for Liver Cancer Research. Front. Cell Dev. Biol. 2025;12:1536854. doi: 10.3389/fcell.2024.1536854. PubMed DOI PMC

Shahzad K., Asad M., Asiri A. M., Irfan M., Iqbal M. A.. In-Vitro Anticancer Profile of Recent Ruthenium Complexes against Liver Cancer. Rev. Inorg. Chem. 2023;43(1):33–47. doi: 10.1515/revic-2021-0040. DOI

Neves S. P., De Carvalho N. C., Da Silva M. M., Rodrigues A. C. B. C., Bomfim L. M., Dias R. B., Sales C. B. S., Rocha C. A. G., Soares M. B. P., Batista A. A., Bezerra D. P.. Ruthenium Complexes Containing Heterocyclic Thioamidates Trigger Caspase-Mediated Apoptosis Through MAPK Signaling in Human Hepatocellular Carcinoma Cells. Front. Oncol. 2019;9:562. doi: 10.3389/fonc.2019.00562. PubMed DOI PMC

De Carvalho N. C., Neves S. P., Dias R. B., Valverde L. D. F., Sales C. B. S., Rocha C. A. G., Soares M. B. P., Dos Santos E. R., Oliveira R. M. M., Carlos R. M., Nogueira P. C. L., Bezerra D. P.. A Novel Ruthenium Complex with Xanthoxylin Induces S-Phase Arrest and Causes ERK1/2-Mediated Apoptosis in HepG2 Cells through a P53-Independent Pathway. Cell Death Dis. 2018;9(2):79. doi: 10.1038/s41419-017-0104-6. PubMed DOI PMC

Neves S. P., Bomfim L. M., Kataura T., Carvalho S. G., Nogueira M. L., Dias R. B., Valverde L. D. F., Gurgel Rocha C. A., Soares M. B. P., Silva M. M. D., Batista A. A., Korolchuk V. I., Bezerra D. P.. Ruthenium Complex Containing 1,3-Thiazolidine-2-Thione Inhibits Hepatic Cancer Stem Cells by Suppressing Akt/mTOR Signalling and Leading to Apoptotic and Autophagic Cell Death. Biomed. Pharmacother. 2024;177:117059. doi: 10.1016/j.biopha.2024.117059. PubMed DOI

Hanahan D., Weinberg R. A.. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Mizushima N., Komatsu M.. Autophagy: Renovation of Cells and Tissues. Cell. 2011;147(4):728–741. doi: 10.1016/j.cell.2011.10.026. PubMed DOI

Hirschhaeuser F., Menne H., Dittfeld C., West J., Mueller-Klieser W., Kunz-Schughart L. A.. Multicellular Tumor Spheroids: An Underestimated Tool Is Catching up Again. J. Biotechnol. 2010;148(1):3–15. doi: 10.1016/j.jbiotec.2010.01.012. PubMed DOI

Evan G. I., Vousden K. H.. Proliferation, Cell Cycle and Apoptosis in Cancer. Nature. 2001;411(6835):342–348. doi: 10.1038/35077213. PubMed DOI

Prasetyanti P. R., Medema J. P.. Intra-Tumor Heterogeneity from a Cancer Stem Cell Perspective. Mol. Cancer. 2017;16(1):41. doi: 10.1186/s12943-017-0600-4. PubMed DOI PMC

Meacham C. E., Morrison S. J.. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501(7467):328–337. doi: 10.1038/nature12624. PubMed DOI PMC

Pickup M. W., Mouw J. K., Weaver V. M.. The Extracellular Matrix Modulates the Hallmarks of Cancer. EMBO Reports. 2014;15(12):1243–1253. doi: 10.15252/embr.201439246. PubMed DOI PMC

Kanaoujiya R., Meenakshi, Srivastava S., Singh R., Mustafa G.. Recent Advances and Application of Ruthenium Complexes in Tumor Malignancy. Mater. Today Proc. 2023;72:2822–2827. doi: 10.1016/j.matpr.2022.07.098. DOI

Lee S. Y., Kim C. Y., Nam T.-G.. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des., Dev. Ther. 2020;14:5375–5392. doi: 10.2147/DDDT.S275007. PubMed DOI PMC

Thota S., Rodrigues D. A., Crans D. C., Barreiro E. J.. Ru­(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J. Med. Chem. 2018;61(14):5805–5821. doi: 10.1021/acs.jmedchem.7b01689. PubMed DOI

Cetinbas N., Webb M. I., Dubland J. A., Walsby C. J.. Serum-Protein Interactions with Anticancer Ru­(III) Complexes KP1019 and KP418 Characterized by EPR. J. Biol. Inorg. Chem. 2010;15(2):131–145. doi: 10.1007/s00775-009-0578-5. PubMed DOI

Webb M. I., Walsby C. J.. EPR as a Probe of the Intracellular Speciation of Ruthenium­(Iii) Anticancer Compounds. Metallomics. 2013;5(12):1624. doi: 10.1039/c3mt00090g. PubMed DOI

Alessio E.. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017;2017(12):1549–1560. doi: 10.1002/ejic.201600986. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...