Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure

. 2022 Jan 22 ; 12 (3) : . [epub] 20220122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159694

Grantová podpora
20-52-26017 Russian Foundation for Basic Research
21-12567J Czech Science Foundation
LM2018110 CzechNanoLab research infrastructure supported by the Ministry of Education, Youth and Sports of the Czech Republic

Diamond properties down to the quantum-size region are still poorly understood. High-pressure high-temperature (HPHT) synthesis from chloroadamantane molecules allows precise control of nanodiamond size. Thermal stability and optical properties of nanodiamonds with sizes spanning range from <1 to 8 nm are investigated. It is shown that the existing hypothesis about enhanced thermal stability of nanodiamonds smaller than 2 nm is incorrect. The most striking feature in IR absorption of these samples is the appearance of an enhanced transmission band near the diamond Raman mode (1332 cm-1). Following the previously proposed explanation, we attribute this phenomenon to the Fano effect caused by resonance of the diamond Raman mode with continuum of conductive surface states. We assume that these surface states may be formed by reconstruction of broken bonds on the nanodiamond surfaces. This effect is also responsible for the observed asymmetry of Raman scattering peak. The mechanism of nanodiamond formation in HPHT synthesis is proposed, explaining peculiarities of their structure and properties.

Zobrazit více v PubMed

Stehlik S., Varga M., Ledinsky M., Jirasek V., Artemenko A., Kozak H., Ondic L., Skakalova V., Argentero G., Pennycook T., et al. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC

Stehlik S., Varga M., Stenclova P., Ondic L., Ledinsky M., Pangrac J., Vanek O., Lipov J., Kromka A., Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI

Shenderova O.A., Shames A.I., Nunn N.A., Torelli M.D., Vlasov I., Zaitsev A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. J. Vac. Sci. Technol. B. 2019;37:030802. doi: 10.1116/1.5089898. PubMed DOI PMC

Ekimov E.A., Kondrin M.V. Vacancy-impurity centers in diamond: Perspectives of synthesis and applications. Phys. Uspekhi. 2017;60:539–558. doi: 10.3367/UFNe.2016.11.037959. DOI

Stehlik S., Mermoux M., Schummer B., Vanek O., Kolarova K., Stenclova P., Vlk A., Ledinsky M., Pfeifer R., Romanyuk O., et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI

Kuznetsov V.L., Butenko Y.V. 13—Diamond Phase Transitions at Nanoscale. In: Shenderova O.A., Gruen D.M., editors. Ultrananocrystalline Diamond. William Andrew Publishing; Norwich, NY, USA: 2006. pp. 405–475. DOI

Zhao D., Zhao M., Jiang Q. Size and temperature dependence of nanodiamond–nanographite transition related with surface stress. Diam. Relat. Mater. 2002;11:234–236. doi: 10.1016/S0925-9635(01)00694-X. DOI

Sun Y., Kvashnin A.G., Sorokin P.B., Yakobson B.I., Billups W.E. Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen. J. Phys. Chem. Lett. 2014;5:1924–1928. doi: 10.1021/jz5007912. PubMed DOI

Barnard A.S., Russo S.P., Snook I.K. Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. J. Chem. Phys. 2003;118:5094–5097. doi: 10.1063/1.1545450. DOI

Wang C., Chen J., Yang G., Xu N. Thermodynamic Stability and Ultrasmall-Size Effect of Nanodiamonds. Angew. Chem. Int. Ed. 2005;44:7414–7418. doi: 10.1002/anie.200501495. PubMed DOI

Butenko Y.V., Kuznetsov V.L., Chuvilin A.L., Kolomiichuk V.N., Stankus S.V., Khairulin R.A., Segall B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys. 2000;88:4380–4388. doi: 10.1063/1.1289791. DOI

Xu N., Chen J., Deng S. Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient. Diam. Relat. Mater. 2002;11:249–256. doi: 10.1016/S0925-9635(01)00680-X. DOI

Qiao Z., Li J., Zhao N., Shi C., Nash P. Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 2006;54:225–229. doi: 10.1016/j.scriptamat.2005.09.037. DOI

Kuznetsov V., Butenko Y. Nanodiamond Graphitization and Properties of Onion-Like Carbon. In: Gruen D.M., Shenderova O.A., Vul’ A.Y., editors. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer; Dordrecht, The Netherlands: 2005. pp. 199–216.

Tomita S., Sakurai T., Ohta H., Fujii M., Hayashi S. Structure and electronic properties of carbon onions. J. Chem. Phys. 2001;114:7477–7482. doi: 10.1063/1.1360197. DOI

Kuznetsov V.L., Zilberberg I.L., Butenko Y.V., Chuvilin A.L., Segall B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys. 1999;86:863–870. doi: 10.1063/1.370816. DOI

Davydov V.A., Rakhmanina A.V., Lyapin S.G., Ilichev I.D., Boldyrev K.N., Shiryaev A.A., Agafonov V.N. Production of nano- and microdiamonds with Si-V and N-V luminescent centers at high pressures in systems based on mixtures of hydrocarbon and fluorocarbon compounds. JETP Lett. 2014;99:585–589. doi: 10.1134/S002136401410004X. DOI

Ekimov E., Lyapin S., Grigoriev Y., Zibrov I., Kondrina K. Size-controllable synthesis of ultrasmall diamonds from halogenated adamantanes at high static pressure. Carbon. 2019;150:436–438. doi: 10.1016/j.carbon.2019.05.047. DOI

Ekimov E., Kondrin M., Lyapin S., Grigoriev Y., Razgulov A., Krivobok V., Gierlotka S., Stelmakh S. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes. Diam. Relat. Mater. 2020;103:107718. doi: 10.1016/j.diamond.2020.107718. DOI

Ekimov E., Kondrina K., Zibrov I., Lyapin S., Lovygin M., Kazanskiy P. Iodine-mediated high-pressure high-temperature carbonization of hydrocarbons and synthesis of nanodiamonds. Mater. Res. Bull. 2021;137:111189. doi: 10.1016/j.materresbull.2020.111189. DOI

Kondrin M.V., Zibrov I.P., Lyapin S.G., Grigoriev Y.V., Khmelnitskiy R.A., Ekimov E.A. A New Pressure-induced Mechanism of Polyvinyl Chloride Pyrolysis with Formation of Nanodiamonds. ChemNanoMat. 2021;7:17–26. doi: 10.1002/cnma.202000504. DOI

Kudryavtsev O.S., Bagramov R.H., Satanin A.M., Shiryaev A.A., Lebedev O.I., Romshin A.M., Pasternak D.G., Nikolaev A.V., Filonenko V.P., Vlasov I.I. Fano-type effect in hydrogen-terminated pure nanodiamond. arXiv. 2021physics.optics/2106.03230 PubMed

Kondrina K., Kudryavtsev O., Vlasov I., Khmelnitskiy R., Ekimov E. High-pressure synthesis of microdiamonds from polyethylene terephthalate. Diam. Relat. Mater. 2018;83:190–195. doi: 10.1016/j.diamond.2018.02.008. DOI

Mermoux M., Crisci A., Petit T., Girard H.A., Arnault J.C. Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI

Shenderova O., Panich A.M., Moseenkov S., Hens S.C., Kuznetsov V., Vieth H.M. Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. J. Phys. Chem. C. 2011;115:19005–19011. doi: 10.1021/jp205389m. DOI

Stehlik S., Glatzel T., Pichot V., Pawlak R., Meyer E., Spitzer D., Rezek B. Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 2016;63:97–102. doi: 10.1016/j.diamond.2015.08.016. DOI

Stehlik S., Henych J., Stenclova P., Kral R., Zemenova P., Pangrac J., Vanek O., Kromka A., Rezek B. Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon. 2021;171:230–239. doi: 10.1016/j.carbon.2020.09.026. DOI

Petit T., Puskar L., Dolenko T., Choudhury S., Ritter E., Burikov S., Laptinskiy K., Brzustowski Q., Schade U., Yuzawa H., et al. Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C. 2017;121:5185–5194. doi: 10.1021/acs.jpcc.7b00721. DOI

Beltán M., Marcilla A. Fourier Transform Infrared Spectroscopy Applied to the Study of PVC Decomposition. Eur. Polym. J. 1997;33:1135–1142. doi: 10.1016/S0014-3057(97)00001-3. DOI

Ferrari A.C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI

Chang H.C., Lin J.C., Wu J.Y., Chen K.H. Infrared spectroscopy and vibrational relaxation of CHx and CDx stretches on synthetic diamond nanocrystal surfaces. J. Phys. Chem. 1995;99:11081–11088. doi: 10.1021/j100028a007. DOI

Cheng C.L., Chen C.F., Shaio W.C., Tsai D.S., Chen K.H. The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 2005;14:1455–1462. doi: 10.1016/j.diamond.2005.03.003. DOI

Sheppard N. Some Characteristic Frequencies in the Raman Spectra of Saturated Aliphatic Hydrocarbons. J. Chem. Phys. 1948;16:690–697. doi: 10.1063/1.1746976. DOI

Harada I., Miura T., Takeuchi H. Origin of the doublet at 1360 and 1340 cm-1 in the Raman spectra of tryptophan and related compounds. Spectrochim. Acta Part A Mol. Spectrosc. 1986;42:307–312. doi: 10.1016/0584-8539(86)80193-3. DOI

Barnard A.S., Russo S.P., Snook I.K. Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Phys. Rev. B. 2003;68:073406. doi: 10.1103/PhysRevB.68.073406. DOI

Chang S.L.Y., Dwyer C., Osawa E., Barnard A.S. Size dependent surface reconstruction in detonation nanodiamonds. Nanoscale Horiz. 2018;3:213–217. doi: 10.1039/C7NH00125H. PubMed DOI

Fang L., Ohfuji H., Irifune T. A Novel Technique for the Synthesis of Nanodiamond Powder. J. Nanomater. 2013;2013:201845. doi: 10.1155/2013/201845. DOI

Korepanov V.I., Hamaguchi H., Osawa E., Ermolenkov V., Lednev I.K., Etzold B.J., Levinson O., Zousman B., Epperla C.P., Chang H.C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI

Kondrin M.V., Brazhkin V.V. Diamond monohydride: The most stable three-dimensional hydrocarbon. Phys. Chem. Chem. Phys. 2015;17:17739–17744. doi: 10.1039/C5CP02146D. PubMed DOI

Kondrin M.V., Brazhkin V.V. Is graphane the most stable carbon monohydride? Nanosyst. Phys. Chem. Math. 2016;7:44–50. doi: 10.17586/2220-8054-2016-7-1-44-50. DOI

Kondrin M.V., Lebed Y.B., Brazhkin V.V. Structure and topology of three-dimensional hydrocarbon polymers. Acta Crystallogr. Sect. B. 2016;72:634–641. doi: 10.1107/S2052520616007253. PubMed DOI

Park S., Abate I.I., Liu J., Wang C., Dahl J.E.P., Carlson R.M.K., Yang L., Prakapenka V.B., Greenberg E., Devereaux T.P., et al. Facile diamond synthesis from lower diamondoids. Sci. Adv. 2020;6:eaay9405. doi: 10.1126/sciadv.aay9405. PubMed DOI PMC

Lapointe F., Gaufrès E., Tremblay I., Tang N.Y.W., Martel R., Desjardins P. Fano Resonances in the Midinfrared Spectra of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2012;109:097402. doi: 10.1103/PhysRevLett.109.097402. PubMed DOI

Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961;124:1866–1878. doi: 10.1103/PhysRev.124.1866. DOI

Luk’yanchuk B., Zheludev N.I., Maier S.A., Halas N.J., Nordlander P., Giessen H., Chong C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010;9:707–715. doi: 10.1038/nmat2810. PubMed DOI

Gallinet B., Martin O.J.F. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B. 2011;83:235427. doi: 10.1103/PhysRevB.83.235427. DOI

Joe Y.S., Satanin A.M., Kim C.S. Classical analogy of Fano resonances. Physica Scripta. 2006;74:259–266. doi: 10.1088/0031-8949/74/2/020. DOI

Limonov M.F., Rybin M.V., Poddubny A.N., Kivshar Y.S. Fano resonances in photonics. Nat. Photonics. 2017;11:543–554. doi: 10.1038/nphoton.2017.142. DOI

Lax M., Burstein E. Infrared Lattice Absorption in Ionic and Homopolar Crystals. Phys. Rev. 1955;97:39–52. doi: 10.1103/PhysRev.97.39. DOI

Birman J.L. Theory of Crystal Space Groups and Lattice Dynamics: Infra-Red and Raman Optical Processes of Insulating Crystals. Springer; Berlin/Heidelberg, Germany: 1974. Theory of Crystal Space Groups and Infra-Red and Raman Lattice Processes of Insulating Crystals; pp. 1–521. DOI

Gu P., Cai X., Wu G., Xue C., Chen J., Zhang Z., Yan Z., Liu F., Tang C., Du W., et al. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials. 2021;11:2039. doi: 10.3390/nano11082039. PubMed DOI PMC

Maier F., Riedel M., Mantel B., Ristein J., Ley L. Origin of Surface Conductivity in Diamond. Phys. Rev. Lett. 2000;85:3472–3475. doi: 10.1103/PhysRevLett.85.3472. PubMed DOI

Chakrapani V., Angus J.C., Anderson A.B., Wolter S.D., Stoner B.R., Sumanasekera G.U. Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple. Science. 2007;318:1424–1430. doi: 10.1126/science.1148841. PubMed DOI

Tribelsky M.I., Miroshnichenko A.E. Resonant scattering of electromagnetic waves by small metal particles. Physics-Uspekhi. 2022 doi: 10.3367/UFNe.2021.01.038924. in press. DOI

Ekimov E., Lebed Y.B., Kondrin M. Influence of surface reconstruction on elastic properties of nanosized diamond films and nanodiamonds. Carbon. 2021;171:634–638. doi: 10.1016/j.carbon.2020.08.063. DOI

De La Pierre M., Bruno M., Manfredotti C., Nestola F., Prencipe M., Manfredotti C. The (100), (111) and (110) surfaces of diamond: An ab initio B3LYP study. Mol. Phys. 2014;112:1030–1039. doi: 10.1080/00268976.2013.829250. DOI

Barnard A., Russo S., Snook I. Structural relaxation and relative stability of nanodiamond morphologies. Diam. Relat. Mater. 2003;12:1867–1872. doi: 10.1016/S0925-9635(03)00275-9. DOI

López-Ríos T., Sandré E., Leclercq S., Sauvain E. Polyacetylene in Diamond Films Evidenced by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1996;76:4935–4938. doi: 10.1103/PhysRevLett.76.4935. PubMed DOI

Ferrari A.C., Robertson J. Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond. Phys. Rev. B. 2001;63:121405. doi: 10.1103/PhysRevB.63.121405. DOI

Ito T., Shirakawa H., Ikeda S. Thermal cis/trans isomerization and decomposition of polyacetylene. J. Polym. Sci. Polym. Chem. Ed. 1975;13:1943–1950. doi: 10.1002/pol.1975.170130818. DOI

Davydov V., Rakhmanina A., Agafonov V., Narymbetov B., Boudou J.P., Szwarc H. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon. 2004;42:261–269. doi: 10.1016/j.carbon.2003.10.026. DOI

Kondrin M.V., Nikolaev N.A., Boldyrev K.N., Shulga Y.M., Zibrov I.P., Brazhkin V.V. Bulk graphanes synthesized from benzene and pyridine. CrystEngComm. 2017;19:958–966. doi: 10.1039/C6CE02327D. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...