Size-Dependent Thermal Stability and Optical Properties of Ultra-Small Nanodiamonds Synthesized under High Pressure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-52-26017
Russian Foundation for Basic Research
21-12567J
Czech Science Foundation
LM2018110
CzechNanoLab research infrastructure supported by the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35159694
PubMed Central
PMC8838209
DOI
10.3390/nano12030351
PII: nano12030351
Knihovny.cz E-zdroje
- Klíčová slova
- Fano effect, Fourier-transformed infrared spectra, Raman scattering, chloroadamantane, high-pressure high-temperature synthesis, nanodiamond,
- Publikační typ
- časopisecké články MeSH
Diamond properties down to the quantum-size region are still poorly understood. High-pressure high-temperature (HPHT) synthesis from chloroadamantane molecules allows precise control of nanodiamond size. Thermal stability and optical properties of nanodiamonds with sizes spanning range from <1 to 8 nm are investigated. It is shown that the existing hypothesis about enhanced thermal stability of nanodiamonds smaller than 2 nm is incorrect. The most striking feature in IR absorption of these samples is the appearance of an enhanced transmission band near the diamond Raman mode (1332 cm-1). Following the previously proposed explanation, we attribute this phenomenon to the Fano effect caused by resonance of the diamond Raman mode with continuum of conductive surface states. We assume that these surface states may be formed by reconstruction of broken bonds on the nanodiamond surfaces. This effect is also responsible for the observed asymmetry of Raman scattering peak. The mechanism of nanodiamond formation in HPHT synthesis is proposed, explaining peculiarities of their structure and properties.
Zobrazit více v PubMed
Stehlik S., Varga M., Ledinsky M., Jirasek V., Artemenko A., Kozak H., Ondic L., Skakalova V., Argentero G., Pennycook T., et al. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Stehlik S., Varga M., Stenclova P., Ondic L., Ledinsky M., Pangrac J., Vanek O., Lipov J., Kromka A., Rezek B. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds. ACS Appl. Mater. Interfaces. 2017;9:38842–38853. doi: 10.1021/acsami.7b14436. PubMed DOI
Shenderova O.A., Shames A.I., Nunn N.A., Torelli M.D., Vlasov I., Zaitsev A. Review Article: Synthesis, properties, and applications of fluorescent diamond particles. J. Vac. Sci. Technol. B. 2019;37:030802. doi: 10.1116/1.5089898. PubMed DOI PMC
Ekimov E.A., Kondrin M.V. Vacancy-impurity centers in diamond: Perspectives of synthesis and applications. Phys. Uspekhi. 2017;60:539–558. doi: 10.3367/UFNe.2016.11.037959. DOI
Stehlik S., Mermoux M., Schummer B., Vanek O., Kolarova K., Stenclova P., Vlk A., Ledinsky M., Pfeifer R., Romanyuk O., et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI
Kuznetsov V.L., Butenko Y.V. 13—Diamond Phase Transitions at Nanoscale. In: Shenderova O.A., Gruen D.M., editors. Ultrananocrystalline Diamond. William Andrew Publishing; Norwich, NY, USA: 2006. pp. 405–475. DOI
Zhao D., Zhao M., Jiang Q. Size and temperature dependence of nanodiamond–nanographite transition related with surface stress. Diam. Relat. Mater. 2002;11:234–236. doi: 10.1016/S0925-9635(01)00694-X. DOI
Sun Y., Kvashnin A.G., Sorokin P.B., Yakobson B.I., Billups W.E. Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen. J. Phys. Chem. Lett. 2014;5:1924–1928. doi: 10.1021/jz5007912. PubMed DOI
Barnard A.S., Russo S.P., Snook I.K. Size dependent phase stability of carbon nanoparticles: Nanodiamond versus fullerenes. J. Chem. Phys. 2003;118:5094–5097. doi: 10.1063/1.1545450. DOI
Wang C., Chen J., Yang G., Xu N. Thermodynamic Stability and Ultrasmall-Size Effect of Nanodiamonds. Angew. Chem. Int. Ed. 2005;44:7414–7418. doi: 10.1002/anie.200501495. PubMed DOI
Butenko Y.V., Kuznetsov V.L., Chuvilin A.L., Kolomiichuk V.N., Stankus S.V., Khairulin R.A., Segall B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys. 2000;88:4380–4388. doi: 10.1063/1.1289791. DOI
Xu N., Chen J., Deng S. Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient. Diam. Relat. Mater. 2002;11:249–256. doi: 10.1016/S0925-9635(01)00680-X. DOI
Qiao Z., Li J., Zhao N., Shi C., Nash P. Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 2006;54:225–229. doi: 10.1016/j.scriptamat.2005.09.037. DOI
Kuznetsov V., Butenko Y. Nanodiamond Graphitization and Properties of Onion-Like Carbon. In: Gruen D.M., Shenderova O.A., Vul’ A.Y., editors. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer; Dordrecht, The Netherlands: 2005. pp. 199–216.
Tomita S., Sakurai T., Ohta H., Fujii M., Hayashi S. Structure and electronic properties of carbon onions. J. Chem. Phys. 2001;114:7477–7482. doi: 10.1063/1.1360197. DOI
Kuznetsov V.L., Zilberberg I.L., Butenko Y.V., Chuvilin A.L., Segall B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. J. Appl. Phys. 1999;86:863–870. doi: 10.1063/1.370816. DOI
Davydov V.A., Rakhmanina A.V., Lyapin S.G., Ilichev I.D., Boldyrev K.N., Shiryaev A.A., Agafonov V.N. Production of nano- and microdiamonds with Si-V and N-V luminescent centers at high pressures in systems based on mixtures of hydrocarbon and fluorocarbon compounds. JETP Lett. 2014;99:585–589. doi: 10.1134/S002136401410004X. DOI
Ekimov E., Lyapin S., Grigoriev Y., Zibrov I., Kondrina K. Size-controllable synthesis of ultrasmall diamonds from halogenated adamantanes at high static pressure. Carbon. 2019;150:436–438. doi: 10.1016/j.carbon.2019.05.047. DOI
Ekimov E., Kondrin M., Lyapin S., Grigoriev Y., Razgulov A., Krivobok V., Gierlotka S., Stelmakh S. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes. Diam. Relat. Mater. 2020;103:107718. doi: 10.1016/j.diamond.2020.107718. DOI
Ekimov E., Kondrina K., Zibrov I., Lyapin S., Lovygin M., Kazanskiy P. Iodine-mediated high-pressure high-temperature carbonization of hydrocarbons and synthesis of nanodiamonds. Mater. Res. Bull. 2021;137:111189. doi: 10.1016/j.materresbull.2020.111189. DOI
Kondrin M.V., Zibrov I.P., Lyapin S.G., Grigoriev Y.V., Khmelnitskiy R.A., Ekimov E.A. A New Pressure-induced Mechanism of Polyvinyl Chloride Pyrolysis with Formation of Nanodiamonds. ChemNanoMat. 2021;7:17–26. doi: 10.1002/cnma.202000504. DOI
Kudryavtsev O.S., Bagramov R.H., Satanin A.M., Shiryaev A.A., Lebedev O.I., Romshin A.M., Pasternak D.G., Nikolaev A.V., Filonenko V.P., Vlasov I.I. Fano-type effect in hydrogen-terminated pure nanodiamond. arXiv. 2021physics.optics/2106.03230 PubMed
Kondrina K., Kudryavtsev O., Vlasov I., Khmelnitskiy R., Ekimov E. High-pressure synthesis of microdiamonds from polyethylene terephthalate. Diam. Relat. Mater. 2018;83:190–195. doi: 10.1016/j.diamond.2018.02.008. DOI
Mermoux M., Crisci A., Petit T., Girard H.A., Arnault J.C. Surface Modifications of Detonation Nanodiamonds Probed by Multiwavelength Raman Spectroscopy. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI
Shenderova O., Panich A.M., Moseenkov S., Hens S.C., Kuznetsov V., Vieth H.M. Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. J. Phys. Chem. C. 2011;115:19005–19011. doi: 10.1021/jp205389m. DOI
Stehlik S., Glatzel T., Pichot V., Pawlak R., Meyer E., Spitzer D., Rezek B. Water interaction with hydrogenated and oxidized detonation nanodiamonds—Microscopic and spectroscopic analyses. Diam. Relat. Mater. 2016;63:97–102. doi: 10.1016/j.diamond.2015.08.016. DOI
Stehlik S., Henych J., Stenclova P., Kral R., Zemenova P., Pangrac J., Vanek O., Kromka A., Rezek B. Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon. 2021;171:230–239. doi: 10.1016/j.carbon.2020.09.026. DOI
Petit T., Puskar L., Dolenko T., Choudhury S., Ritter E., Burikov S., Laptinskiy K., Brzustowski Q., Schade U., Yuzawa H., et al. Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds. J. Phys. Chem. C. 2017;121:5185–5194. doi: 10.1021/acs.jpcc.7b00721. DOI
Beltán M., Marcilla A. Fourier Transform Infrared Spectroscopy Applied to the Study of PVC Decomposition. Eur. Polym. J. 1997;33:1135–1142. doi: 10.1016/S0014-3057(97)00001-3. DOI
Ferrari A.C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI
Chang H.C., Lin J.C., Wu J.Y., Chen K.H. Infrared spectroscopy and vibrational relaxation of CHx and CDx stretches on synthetic diamond nanocrystal surfaces. J. Phys. Chem. 1995;99:11081–11088. doi: 10.1021/j100028a007. DOI
Cheng C.L., Chen C.F., Shaio W.C., Tsai D.S., Chen K.H. The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 2005;14:1455–1462. doi: 10.1016/j.diamond.2005.03.003. DOI
Sheppard N. Some Characteristic Frequencies in the Raman Spectra of Saturated Aliphatic Hydrocarbons. J. Chem. Phys. 1948;16:690–697. doi: 10.1063/1.1746976. DOI
Harada I., Miura T., Takeuchi H. Origin of the doublet at 1360 and 1340 cm-1 in the Raman spectra of tryptophan and related compounds. Spectrochim. Acta Part A Mol. Spectrosc. 1986;42:307–312. doi: 10.1016/0584-8539(86)80193-3. DOI
Barnard A.S., Russo S.P., Snook I.K. Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Phys. Rev. B. 2003;68:073406. doi: 10.1103/PhysRevB.68.073406. DOI
Chang S.L.Y., Dwyer C., Osawa E., Barnard A.S. Size dependent surface reconstruction in detonation nanodiamonds. Nanoscale Horiz. 2018;3:213–217. doi: 10.1039/C7NH00125H. PubMed DOI
Fang L., Ohfuji H., Irifune T. A Novel Technique for the Synthesis of Nanodiamond Powder. J. Nanomater. 2013;2013:201845. doi: 10.1155/2013/201845. DOI
Korepanov V.I., Hamaguchi H., Osawa E., Ermolenkov V., Lednev I.K., Etzold B.J., Levinson O., Zousman B., Epperla C.P., Chang H.C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI
Kondrin M.V., Brazhkin V.V. Diamond monohydride: The most stable three-dimensional hydrocarbon. Phys. Chem. Chem. Phys. 2015;17:17739–17744. doi: 10.1039/C5CP02146D. PubMed DOI
Kondrin M.V., Brazhkin V.V. Is graphane the most stable carbon monohydride? Nanosyst. Phys. Chem. Math. 2016;7:44–50. doi: 10.17586/2220-8054-2016-7-1-44-50. DOI
Kondrin M.V., Lebed Y.B., Brazhkin V.V. Structure and topology of three-dimensional hydrocarbon polymers. Acta Crystallogr. Sect. B. 2016;72:634–641. doi: 10.1107/S2052520616007253. PubMed DOI
Park S., Abate I.I., Liu J., Wang C., Dahl J.E.P., Carlson R.M.K., Yang L., Prakapenka V.B., Greenberg E., Devereaux T.P., et al. Facile diamond synthesis from lower diamondoids. Sci. Adv. 2020;6:eaay9405. doi: 10.1126/sciadv.aay9405. PubMed DOI PMC
Lapointe F., Gaufrès E., Tremblay I., Tang N.Y.W., Martel R., Desjardins P. Fano Resonances in the Midinfrared Spectra of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2012;109:097402. doi: 10.1103/PhysRevLett.109.097402. PubMed DOI
Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961;124:1866–1878. doi: 10.1103/PhysRev.124.1866. DOI
Luk’yanchuk B., Zheludev N.I., Maier S.A., Halas N.J., Nordlander P., Giessen H., Chong C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010;9:707–715. doi: 10.1038/nmat2810. PubMed DOI
Gallinet B., Martin O.J.F. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B. 2011;83:235427. doi: 10.1103/PhysRevB.83.235427. DOI
Joe Y.S., Satanin A.M., Kim C.S. Classical analogy of Fano resonances. Physica Scripta. 2006;74:259–266. doi: 10.1088/0031-8949/74/2/020. DOI
Limonov M.F., Rybin M.V., Poddubny A.N., Kivshar Y.S. Fano resonances in photonics. Nat. Photonics. 2017;11:543–554. doi: 10.1038/nphoton.2017.142. DOI
Lax M., Burstein E. Infrared Lattice Absorption in Ionic and Homopolar Crystals. Phys. Rev. 1955;97:39–52. doi: 10.1103/PhysRev.97.39. DOI
Birman J.L. Theory of Crystal Space Groups and Lattice Dynamics: Infra-Red and Raman Optical Processes of Insulating Crystals. Springer; Berlin/Heidelberg, Germany: 1974. Theory of Crystal Space Groups and Infra-Red and Raman Lattice Processes of Insulating Crystals; pp. 1–521. DOI
Gu P., Cai X., Wu G., Xue C., Chen J., Zhang Z., Yan Z., Liu F., Tang C., Du W., et al. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka. Nanomaterials. 2021;11:2039. doi: 10.3390/nano11082039. PubMed DOI PMC
Maier F., Riedel M., Mantel B., Ristein J., Ley L. Origin of Surface Conductivity in Diamond. Phys. Rev. Lett. 2000;85:3472–3475. doi: 10.1103/PhysRevLett.85.3472. PubMed DOI
Chakrapani V., Angus J.C., Anderson A.B., Wolter S.D., Stoner B.R., Sumanasekera G.U. Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple. Science. 2007;318:1424–1430. doi: 10.1126/science.1148841. PubMed DOI
Tribelsky M.I., Miroshnichenko A.E. Resonant scattering of electromagnetic waves by small metal particles. Physics-Uspekhi. 2022 doi: 10.3367/UFNe.2021.01.038924. in press. DOI
Ekimov E., Lebed Y.B., Kondrin M. Influence of surface reconstruction on elastic properties of nanosized diamond films and nanodiamonds. Carbon. 2021;171:634–638. doi: 10.1016/j.carbon.2020.08.063. DOI
De La Pierre M., Bruno M., Manfredotti C., Nestola F., Prencipe M., Manfredotti C. The (100), (111) and (110) surfaces of diamond: An ab initio B3LYP study. Mol. Phys. 2014;112:1030–1039. doi: 10.1080/00268976.2013.829250. DOI
Barnard A., Russo S., Snook I. Structural relaxation and relative stability of nanodiamond morphologies. Diam. Relat. Mater. 2003;12:1867–1872. doi: 10.1016/S0925-9635(03)00275-9. DOI
López-Ríos T., Sandré E., Leclercq S., Sauvain E. Polyacetylene in Diamond Films Evidenced by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1996;76:4935–4938. doi: 10.1103/PhysRevLett.76.4935. PubMed DOI
Ferrari A.C., Robertson J. Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond. Phys. Rev. B. 2001;63:121405. doi: 10.1103/PhysRevB.63.121405. DOI
Ito T., Shirakawa H., Ikeda S. Thermal cis/trans isomerization and decomposition of polyacetylene. J. Polym. Sci. Polym. Chem. Ed. 1975;13:1943–1950. doi: 10.1002/pol.1975.170130818. DOI
Davydov V., Rakhmanina A., Agafonov V., Narymbetov B., Boudou J.P., Szwarc H. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon. 2004;42:261–269. doi: 10.1016/j.carbon.2003.10.026. DOI
Kondrin M.V., Nikolaev N.A., Boldyrev K.N., Shulga Y.M., Zibrov I.P., Brazhkin V.V. Bulk graphanes synthesized from benzene and pyridine. CrystEngComm. 2017;19:958–966. doi: 10.1039/C6CE02327D. DOI
High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications
Absolute energy levels in nanodiamonds of different origins and surface chemistries