Transition in morphology and properties in bottom-up HPHT nanodiamonds synthesized from chloroadamantane
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40092062
PubMed Central
PMC11905917
DOI
10.1039/d4na00802b
PII: d4na00802b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Direct bottom-up high pressure high temperature (BU_HPHT) synthesis of nanodiamonds (NDs) from organic precursors excels in the ability to control the size of the resulting BU_HPHT NDs via the temperature of the synthesis. Here we investigated size-dependent thermal, colloidal, and structural properties of the BU_HPHT NDs and focused on the transition in morphology and properties occurring at around 900 °C (≈2 nm). Using transmission electron microscopy, small angle X-ray scattering and atomic force microscopy we show that the sub-900 °C samples (<2 nm NDs) do not have nanoparticle character but 2D platelet morphology with sub-nm unit thickness. Correspondingly, sub-900 °C samples (<2 nm NDs) have a negative zeta potential and hydrophobic character and should be considered as a form of a molecular diamond. The above-900C (>2 nm NDs) samples have nanocrystalline character, positive zeta potential and are dispersible in water similarly to other types of hydrogenated NDs. By in situ Raman spectroscopy experiments, we show that the transition is also related to the structural instability of the oxidized sub-2 nm BU_HPHT NDs.
Faculty of Electrical Engineering Czech Technical University Prague Czech Republic
Institute of Inorganic Chemistry of the Czech Academy of Sciences Husinec Řež Czech Republic
Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
New Technologies Research Centre University of West Bohemia in Pilsen Pilsen Czech Republic
Vereshchagin Institute for High Pressure Physics Russian Academy of Sciences Troitsk Russia
Zobrazit více v PubMed
Xue Y. Feng X. Roberts S. C. Chen X. Funct. Diam. 2021;1:221–242. doi: 10.1080/26941112.2021.2013716. DOI
Zhang T. Pramanik G. Zhang K. Gulka M. Wang L. Jing J. Xu F. Li Z. Wei Q. Cigler P. Chu Z. ACS Sens. 2021;6:2077–2107. doi: 10.1021/acssensors.1c00415. PubMed DOI
Wang C. Sun X. Zhang J. Zhai X. Zhang X. Li Z. Li H. Chem. Eng. J. 2023;466:143191. doi: 10.1016/j.cej.2023.143191. DOI
Liu K. Sun M. Yang S. Gan G. Bu S. Zhu A. Lin D. Zhang T. Luan C. Zhi C. Wang P. Huang B. Hong G. Zhang W. Adv. Energy Mater. 2024:2401479. doi: 10.1002/aenm.202401479. DOI
Wang M. Zhang J. Wu M. Yang D. Sun P. Sun J. Zhang Z. Chen X. Ba J. Wang Y. Qiu J. Wei Y. Adv. Funct. Mater. 2024:2315757. doi: 10.1002/adfm.202315757. DOI
Henych J. Stehlík Š. Mazanec K. Tolasz J. Čermák J. Rezek B. Mattsson A. Österlund L. Appl. Catal., B. 2019;259:118097. doi: 10.1016/j.apcatb.2019.118097. DOI
Marchal C. Saoudi L. Girard H. A. Keller V. Arnault J. Adv. Energy Sustainability Res. 2023:2300260.
Bland H. A. Centeleghe I. A. Mandal S. Thomas E. L. H. Maillard J.-Y. Williams O. A. ACS Appl. Nano Mater. 2021;4:3252–3261. doi: 10.1021/acsanm.1c00439. PubMed DOI PMC
Molavi H. Mirzaei K. Jafarpour E. Mohammadi A. Salimi M. S. Rezakazemi M. Nadagouda M. M. Aminabhavi T. M. J. Environ. Manage. 2024;349:119349. doi: 10.1016/j.jenvman.2023.119349. PubMed DOI
Turner S. Lebedev O. I. Shenderova O. Vlasov I. I. Verbeeck J. Van Tendeloo G. Adv. Funct. Mater. 2009;19:2116–2124. doi: 10.1002/adfm.200801872. DOI
Turner S. Shenderova O. Da Pieve F. Lu Y. Yücelen E. Verbeeck J. Lamoen D. Van Tendeloo G. Phys. Status Solidi A. 2013;210:1976–1984. doi: 10.1002/pssa.201300315. DOI
Rehor I. Cigler P. Diamond Relat. Mater. 2014;46:21–24. doi: 10.1016/j.diamond.2014.04.002. DOI
Stehlik S. Szabo O. Shagieva E. Miliaieva D. Kromka A. Nemeckova Z. Henych J. Kozempel J. Ekimov E. Rezek B. Carbon Trends. 2024;14:100327. doi: 10.1016/j.cartre.2024.100327. DOI
Ekimov E. A. Lyapin S. G. Grigoriev Yu. V. Zibrov I. P. Kondrina K. M. Carbon. 2019;150:436–438. doi: 10.1016/j.carbon.2019.05.047. DOI
Ekimov E. A. Kondrin M. V. Lyapin S. G. Grigoriev Yu. V. Razgulov A. A. Krivobok V. S. Gierlotka S. Stelmakh S. Diamond Relat. Mater. 2020;103:107718. doi: 10.1016/j.diamond.2020.107718. DOI
Ekimov E. Shiryaev A. A. Grigoriev Y. Averin A. Shagieva E. Stehlik S. Kondrin M. Nanomaterials. 2022;12:351. doi: 10.3390/nano12030351. PubMed DOI PMC
Ekimov E. A. Kudryavtsev O. S. Khomich A. A. Lebedev O. I. Dolenko T. A. Vlasov I. I. Adv. Mater. 2015;27:5518–5522. doi: 10.1002/adma.201502672. PubMed DOI
Ekimov E. A. Kondrin M. V. Krivobok V. S. Khomich A. A. Vlasov I. I. Khmelnitskiy R. A. Iwasaki T. Hatano M. Diamond Relat. Mater. 2019;93:75–83. doi: 10.1016/j.diamond.2019.01.029. DOI
Stelmakh S. Skrobas K. Gierlotka S. Palosz B. J. Phys.: Condens. Matter. 2021;33:175002. doi: 10.1088/1361-648X/abe26a. PubMed DOI
Stehlik S. Varga M. Ledinsky M. Jirasek V. Artemenko A. Kozak H. Ondic L. Skakalova V. Argentero G. Pennycook T. Meyer J. C. Fejfar A. Kromka A. Rezek B. J. Phys. Chem. C. 2015;119:27708–27720. doi: 10.1021/acs.jpcc.5b05259. PubMed DOI PMC
Stehlik S. Varga M. Ledinsky M. Miliaieva D. Kozak H. Skakalova V. Mangler C. Pennycook T. J. Meyer J. C. Kromka A. Rezek B. Sci. Rep. 2016;6:38419. doi: 10.1038/srep38419. PubMed DOI PMC
Bradac C. Osswald S. Carbon. 2018;132:616–622. doi: 10.1016/j.carbon.2018.02.102. DOI
Williams O. A. Hees J. Dieker C. Jäger W. Kirste L. Nebel C. E. ACS Nano. 2010;4:4824–4830. doi: 10.1021/nn100748k. PubMed DOI
Petit T. Girard H. A. Trouvé A. Batonneau-Gener I. Bergonzo P. Arnault J.-C. Nanoscale. 2013;5:8958. doi: 10.1039/C3NR02492J. PubMed DOI
Ginés L. Mandal S. Ashek-I-Ahmed A.-I.-A. Cheng C.-L. Sow M. Williams O. A. Nanoscale. 2017;9:12549–12555. doi: 10.1039/C7NR03200E. PubMed DOI
Yoshikawa T. Zuerbig V. Gao F. Hoffmann R. Nebel C. E. Ambacher O. Lebedev V. Langmuir. 2015;31:5319–5325. doi: 10.1021/acs.langmuir.5b01060. PubMed DOI
Shvidchenko A. V. Eidelman E. D. Vul’ A. Ya. Kuznetsov N. M. Stolyarova D. Yu. Belousov S. I. Chvalun S. N. Adv. Colloid Interface Sci. 2019;268:64–81. doi: 10.1016/j.cis.2019.03.008. PubMed DOI
Crawford K. G. Maini I. Macdonald D. A. Moran D. A. J. Prog. Surf. Sci. 2021;96:100613. doi: 10.1016/j.progsurf.2021.100613. DOI
Vlk A. Ledinsky M. Shiryaev A. Ekimov E. Stehlik S. J. Phys. Chem. C. 2022;126:6318–6324. doi: 10.1021/acs.jpcc.2c00446. DOI
Kondo T. Neitzel I. Mochalin V. N. Urai J. Yuasa M. Gogotsi Y. J. Appl. Phys. 2013;113:214307. doi: 10.1063/1.4809549. DOI
Osswald S. Yushin G. Mochalin V. Kucheyev S. O. Gogotsi Y. J. Am. Chem. Soc. 2006;128:11635–11642. doi: 10.1021/ja063303n. PubMed DOI
Mermoux M. Crisci A. Petit T. Girard H. A. Arnault J.-C. J. Phys. Chem. C. 2014;118:23415–23425. doi: 10.1021/jp507377z. DOI
Ilavsky J. Jemian P. R. J. Appl. Crystallogr. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI
Stehlik S. Henych J. Stenclova P. Kral R. Zemenova P. Pangrac J. Vanek O. Kromka A. Rezek B. Carbon. 2021;171:230–239. doi: 10.1016/j.carbon.2020.09.026. DOI
Beaucage G. J. Appl. Crystallogr. 1995;28:717–728. doi: 10.1107/S0021889895005292. DOI
Ozawa M. Inaguma M. Takahashi M. Kataoka F. Krüger A. Ōsawa E. Adv. Mater. 2007;19:1201–1206. doi: 10.1002/adma.200601452. DOI
Turcheniuk K. Trecazzi C. Deeleepojananan C. Mochalin V. N. ACS Appl. Mater. Interfaces. 2016;8:25461–25468. doi: 10.1021/acsami.6b08311. PubMed DOI
Damasceno J. P. V. Kubota L. T. Angew. Chem., Int. Ed. 2022;61:e202214995. doi: 10.1002/anie.202214995. PubMed DOI
Kudin K. N. Car R. J. Am. Chem. Soc. 2008;130:3915–3919. doi: 10.1021/ja077205t. PubMed DOI
Houska V. Ukraintsev E. Vacek J. Rybáček J. Bednárová L. Pohl R. Stará I. G. Rezek B. Starý I. Nanoscale. 2023;15:1542–1553. doi: 10.1039/D2NR04209F. PubMed DOI
Ekimov E. A. Shiryaev A. A. Sidorov V. A. Grigoriev Y. V. Averin A. A. Kondrin M. V. Diamond Relat. Mater. 2023;136:109907. doi: 10.1016/j.diamond.2023.109907. DOI
Ekimov E. A. Kudryavtsev O. S. Mordvinova N. E. Lebedev O. I. Vlasov I. I. ChemNanoMat. 2018;4:269–273. doi: 10.1002/cnma.201700349. DOI
Stehlik S. Mermoux M. Schummer B. Vanek O. Kolarova K. Stenclova P. Vlk A. Ledinsky M. Pfeifer R. Romanyuk O. Gordeev I. Roussel-Dherbey F. Nemeckova Z. Henych J. Bezdicka P. Kromka A. Rezek B. J. Phys. Chem. C. 2021;125:5647–5669. doi: 10.1021/acs.jpcc.0c09190. DOI
Kudryavtsev O. S. Bagramov R. H. Pasternak D. G. Satanin A. M. Lebedev O. I. Filonenko V. P. Vlasov I. I. Diamond Relat. Mater. 2023;133:109770. doi: 10.1016/j.diamond.2023.109770. DOI
Chaigneau M. Picardi G. Girard H. A. Arnault J.-C. Ossikovski R. J. Nanopart. Res. 2012;14:955. doi: 10.1007/s11051-012-0955-9. DOI
Mochalin V. N. Shenderova O. Ho D. Gogotsi Y. Nat. Nanotechnol. 2011;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Wolcott A. Schiros T. Trusheim M. E. Chen E. H. Nordlund D. Diaz R. E. Gaathon O. Englund D. Owen J. S. J. Phys. Chem. C. 2014;118:26695–26702. doi: 10.1021/jp506992c. PubMed DOI PMC
Gouadec G. Colomban P. Prog. Cryst. Growth Charact. Mater. 2007;53:1–56. doi: 10.1016/j.pcrysgrow.2007.01.001. DOI
Kaviani M. Deák P. Aradi B. Köhler T. Frauenheim T. Diamond Relat. Mater. 2013;33:78–84. doi: 10.1016/j.diamond.2013.01.002. DOI