Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31569609
PubMed Central
PMC6836133
DOI
10.3390/polym11101571
PII: polym11101571
Knihovny.cz E-resources
- Keywords
- Bis-GMA polymer, compressive behavior, finite element method, hyperelastic constitutive model, nano-indentation experiment,
- Publication type
- Journal Article MeSH
Despite wide industrial applications of Bis-GMA polymer, very few studies are available about the material classification, mechanical properties, and behavior of this material. In this study, the compressive behavior of Bis-GMA polymer was studied using different hyperelastic constitutive models through a hybrid experimental-computational process. Standard uniaxial compression tests were conducted to extract the mechanical behavior and structural response of the Bis-GMA polymer. A nano-indentation experiment was used to verify the compressive behavior of Bis-GMA polymer in the form of hyperelastic behavior. The finite element model and real-time simulation of the test incorporating different hyperelastic models were developed in comparison with the experimental finding to obtain the proper type of hyperelastic behavior of Bis-GMA polymer. The results indicate that a second-order polynomial hyperelastic model is the best fit to predict the behavior of Bis-GMA polymer. Next, the validated model was used to determine the true stress-strain curve of the Bis-GMA polymer.
Centre of Advanced Composite Materials Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
School of Mechanical Engineering Universiti Teknologi Malaysia Johor Bahru 81310 Malaysia
See more in PubMed
Koloor S.S.R., Khosravani M.R., Hamzah R.I.R., Tamin M.N. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018;141:223–235. doi: 10.1016/j.ijmecsci.2018.03.028. DOI
Douba A., Emiroglu M., Kandil U.F., Reda Taha M.M. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019;196:468–477. doi: 10.1016/j.conbuildmat.2018.11.021. DOI
Arakawa K., Mada T., Todo M., Takahashi J., Ooka S. Impact tensile fracture testing of a brittle polymer. Polym. Test. 2006;25:1095–1100. doi: 10.1016/j.polymertesting.2006.07.006. DOI
Rahimi A.S., Ayatollahi M.R., Torabi A.R. Ductile failure analysis of blunt V-notched epoxy resin plates subjected to combined tension-shear loading. Polym. Test. 2018;70:57–66. doi: 10.1016/j.polymertesting.2018.06.017. DOI
Yang L.M., Shim V.P.W., Lim C.T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int. J. Impact Eng. 2000;24:545–560. doi: 10.1016/S0734-743X(99)00044-5. DOI
Khalajmasoumi M., Koloor S.S.R., Arefnia A., Ibrahim I.S., Yatim J.M. Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Load. Appl. Mech. Mater. 2012;229–231:309–313. doi: 10.4028/www.scientific.net/AMM.229-231.309. DOI
Muhr A.H. Modeling the Stress–strain Behavior of Rubber. Rubber Chem. Technol. 2005;78:391–425. doi: 10.5254/1.3547890. DOI
Elhaouzi F., Nourdine A., Brosseau C., Mdarhri A., El Aboudi I., Zaghrioui M. Hyperelastic Behavior and Dynamic Mechanical Relaxation in Carbon Black-Polymer Composites. Polym. Compos. 2018 doi: 10.1002/pc.25142. DOI
Shin H., Choi J., Cho M. An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites. Compos. Sci. Technol. 2019;175:128–134. doi: 10.1016/j.compscitech.2019.03.015. DOI
Ju M.L., Mezghani S., Jmal H., Dupuis R., Aubry E. Parameter estimation of a hyperelastic constitutive model for the description of polyurethane foam in large deformation. Cell. Polym. 2013;32:21–40. doi: 10.1177/026248931303200102. DOI
Chen Z., Diebels S. Modelling and parameter re-identification of nanoindentation of soft polymers taking into account effects of surface roughness. Comput. Math. Appl. 2012;64:2775–2786. doi: 10.1016/j.camwa.2012.04.010. DOI
Luczynski K.W., Dejaco A., Lahayne O., Jaroszewicz J., Swieszkowski W., Hellmich C. MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young’s Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold. Comput. Model. Eng. Sci. 2012;87:505–528.
Mathews M., Wang H.-T., Li L. Finite Element Analysis of Nanoindentation and Elastic Behavior of Bi2Te3 Two-Dimensional Nanosheets. ECS J. Solid State Sci. Technol. 2016;5:Q3082–Q3087. doi: 10.1149/2.0151611jss. DOI
Lin D.C., Shreiber D.I., Dimitriadis E.K., Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: Numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 2009;8:345–358. doi: 10.1007/s10237-008-0139-9. PubMed DOI PMC
Ehret A.E., Itskov M. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 2007;42:8853–8863. doi: 10.1007/s10853-007-1812-6. DOI
Zhang P., To A.C. Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers. Int. J. Plast. 2016;80:56–74. doi: 10.1016/j.ijplas.2015.12.012. DOI
Bois P.A.D., Kolling S., Koesters M., Frank T. Material behaviour of polymers under impact loading. Int. J. Impact Eng. 2006;32:725–740. doi: 10.1016/j.ijimpeng.2005.02.007. DOI
Ayoub G., Zaïri F., Fréderix C., Gloaguen J.M., Naït-Abdelaziz M., Seguela R., Lefebvre J.M. Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modelling. Int. J. Plast. 2011;27:492–511. doi: 10.1016/j.ijplas.2010.07.005. DOI
Ottosen N.S., Ristinmaa M. Hyperelasticity. In: Ottosen N.S., Ristinmaa M., editors. The Mechanics of Constitutive Modeling. Elsevier Science Ltd.; Oxford, UK: 2005. pp. 67–102. DOI
Shannahan L.S. Ph.D. Thesis. Drexel University; Ann Arbor, MI, USA: 2017. A Hybrid Experimental-Computational Approach for the Analysis of Dynamic Fracture.
Perahia D., Grest G.S. From Interfaces to Bulk: Experimental-Computational Studies Across Time and Length Scales of Multi-Functional Ionic Polymers. Clemson Univ.; Clemson, SC, USA: 2017. DOE-Clemson-001. DOI
Meredig B., Wolverton C. A hybrid computational–experimental approach for automated crystal structure solution. Nat. Mater. 2013;12:123–127. doi: 10.1038/nmat3490. PubMed DOI
Tamin M.N., Nor F.M., Wei Keat L. Hybrid Experimental-Computational Approach for Solder/IMC Interface Shear Strength Determination in Solder Joints. IEEE Trans. Compon. Packag. Technol. 2010;33:614–620. doi: 10.1109/TCAPT.2010.2050887. DOI
Khalajmasoumi M., Koloor S.S.R., Arefnia A., Ibrahim I.S., Yatim J.M. Finite element analysis of curvature precast polymer panel for temporary support of tunnels. Appl. Mech. Mater. 2012;229–231:771–777. doi: 10.4028/www.scientific.net/AMM.229-231.771. DOI
Praharaj A.P., Behera D., Bastia T.K. Fabrication and Mechanical Properties of BisGMA/Amine Functionalized Paper Pulp Composites. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3:12719–12723.
MacDonald K., Boyd D. Mechanical loading, an important factor in the evaluation of ion release from bone augmentation materials. Sci. Rep. 2018;8:14225. doi: 10.1038/s41598-018-32325-1. PubMed DOI PMC
Kawanabe K., Tamura J., Yamamuro T., Nakamura T., Kokubo T., Yoshihara S. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. J. Appl. Biomater. 1993;4:135–141. doi: 10.1002/jab.770040204. PubMed DOI
Sideridou I., Tserki V., Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 2002;23:1819–1829. doi: 10.1016/S0142-9612(01)00308-8. PubMed DOI
Linden L. Dental polymers. In: Salamone C., editor. Polymeric Materials Encyclopedia. Volume 3D–E. CRC Press; New York, NY, USA: 1996. p. 1839.
Hosseinzadeh-Nik T., Karimzadeh A., Ayatollahi M.R. Bond strength of a nano-composite used for bonding ceramic orthodontic brackets. Mater. Des. 2013;51:902–906. doi: 10.1016/j.matdes.2013.05.002. DOI
Karimzadeh A., Ayatollahi M.R., Hosseinzadeh-Nik T. Effects of a Nano-composite Adhesive on Mechanical Properties of Tooth Enamel After Removing Orthodontics Bracket—An Experimental Study Using Nano-indentation Test. Exp. Mech. 2015;55:1769–1777. doi: 10.1007/s11340-015-0087-0. DOI
Karimzadeh A., Ayatollahi M.R., Bushroa A.R. Effect of dental restorative material type and shade on characteristics of two-layer dental composite systems. Lat. Am. J. Solids Struct. 2016;13:1851–1865. doi: 10.1590/1679-78252562. DOI
Karimzadeh A., Ayatollahi M.R., Hosseinzadeh Nik T. Tribological Properties of Dental Enamel Before and After Orthodontic Bracket Bonding-Debonding by Nano-Scratch Test. J. Mech. 2019;35:279–287. doi: 10.1017/jmech.2017.101. DOI
Karimzadeh A., Ayatollahi M.R., Nikkhooyifar M., Bushroa A.R. Nanomechanical properties and wear resistance of dental restorative materials. Struct. Eng. Mech. 2017;64:819–826. doi: 10.12989/sem.2017.64.6.819. DOI
Kalachandra S., Taylor D., DePorter C., McGrath J. Polymeric materials for composite matrices in biological environments. Polymer. 1993;34:778–782. doi: 10.1016/0032-3861(93)90363-F. DOI
Gajewski V., Pfeifer C., Fróes-Salgado N., Boaro L., Braga R. Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz. Dent. J. 2012;23:508–514. doi: 10.1590/S0103-64402012000500007. PubMed DOI
Tiwari A., Polykarpov A. Photocured Materials, Volume 13 of Rsc Smart Materials, Chapter 15: Methacrylate and Epoxy Resins Photocured by Means of Visible Light-Emitting Diodes (LEDs) Royal Society of Chemistry; London, UK: 2014. p. 370.
Barszczewska-Rybarek I.M. Structure–property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent. Mater. 2009;25:1082–1089. doi: 10.1016/j.dental.2009.01.106. PubMed DOI
Floyd C.J.E., Dickens S.H. Network structure of Bis-GMA- and UDMA-based resin systems. Dent. Mater. 2006;22:1143–1149. doi: 10.1016/j.dental.2005.10.009. PubMed DOI
Barszczewska-Rybarek I., Chladek G. Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles. Int. J. Mol. Sci. 2018;19:3937. doi: 10.3390/ijms19123937. PubMed DOI PMC
Emami N., Soderholm K. Young’s modulus and degree of conversion of different combination of light-cure dental resins. Open Dent. J. 2009;3:202–207. doi: 10.2174/1874210600903010202. PubMed DOI PMC
Naumann M., Sterzenbach G., Pröschel P. Evaluation of load testing of postendodontic restorations in vitro: Linear compressive loading, gradual cycling loading and chewing simulation. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2005;74B:829–834. doi: 10.1002/jbm.b.30321. PubMed DOI
Drummond J.L. Degradation, Fatigue, and Failure of Resin Dental Composite Materials. J. Dent. Res. 2008;87:710–719. doi: 10.1177/154405910808700802. PubMed DOI PMC
Ferracane J.L., Greener E.H. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res. 1986;20:121–131. doi: 10.1002/jbm.820200111. PubMed DOI
Magne P., Versluis A., Douglas W.H. Effect of luting composite shrinkage and thermal loads on the stress distribution in porcelain laminate veneers. J. Prosthet. Dent. 1999;81:335–344. doi: 10.1016/S0022-3913(99)70278-7. PubMed DOI
Ogden R.W. Non-Linear Elastic Deformations. Dover Publications; New York, NY, USA: 2013.
Arruda E.M., Boyce M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 1993;41:389–412. doi: 10.1016/0022-5096(93)90013-6. DOI
Bower A.F. Applied Mechanics of Solids, Chapter 3: Constitutive Equations: Relations between Stress and Strain. CRC Press; Boca Raton, FL, USA: 2009.
Section 22.5.1 of the Abaqus Analysis User’s Guide: Hyperelastic Behavior of Rubberlike Materials. Dassault Systèmes; Providence, RI, USA: 2014. Abaqus 6.14 Online Documentation.
Ogden R.W. Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1972;326:565–584. doi: 10.1098/rspa.1972.0026. DOI
Yeoh O.H. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chem. Technol. 1990;63:792–805. doi: 10.5254/1.3538289. DOI
Kilian H.G., Enderle H.F., Unseld K. The use of the van der Waals model to elucidate universal aspects of structure-property relationships in simply extended dry and swollen rubbers. Colloid Polym. Sci. 1986;264:866–876. doi: 10.1007/BF01410637. DOI
Kossa A., Berezvai S. Novel strategy for the hyperelastic parameter fitting procedure of polymer foam materials. Polym. Test. 2016;53:149–155. doi: 10.1016/j.polymertesting.2016.05.014. DOI
Shahzad M., Kamran A., Siddiqui M.Z., Farhan M. Mechanical Characterization and FE Modelling of a Hyperelastic Material. Mater. Res. 2015;18:918–924. doi: 10.1590/1516-1439.320414. DOI
Mishra M., Szlufarska I. Possibility of high-pressure transformation during nanoindentation of SiC. Acta Mater. 2009;57:6156–6165. doi: 10.1016/j.actamat.2009.08.041. DOI
Randolph L.D., Palin W.M., Bebelman S., Devaux J., Gallez B., Leloup G., Leprince J.G. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent. Mater. 2014;30:594–604. doi: 10.1016/j.dental.2014.02.023. PubMed DOI
ASTM D695-15 . Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International; West Conshohocken, PA, USA: 2015.
ISO-14577-1 . Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters. International Organization for Standardization (ISO); Geneva, Switzerland: 2002. Part 1: Test. Method.
Karimzadeh A., Ayatollahi M.R., Alizadeh M. Finite element simulation of nano-indentation experiment on aluminum 1100. Comput. Mater. Sci. 2014;81:595–600. doi: 10.1016/j.commatsci.2013.09.019. DOI
Greaves G.N., Greer A.L., Lakes R.S., Rouxel T. Poisson’s ratio and modern materials. Nat. Mater. 2011;10:823–837. doi: 10.1038/nmat3134. PubMed DOI
Mott P.H., Roland C.M. Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B. 2009;80:132104–132108. doi: 10.1103/PhysRevB.80.132104. DOI
Nitta K.-H., Yamana M. Rheology. InTech; Rijeka, Croatia: 2012. Chapter 5: Poisson’s Ratio and Mechanical Nonlinearity Under Tensile Deformation in Crystalline Polymers; pp. 113–130.
Karimzadeharani A. Investigation on Orthodontic Bond Strength Using Experimental and Numerical Methods. Iran University of Science and Technology; Tehran, Iran: 2017.
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Ng T.P., Koloor S.S.R., Djuansjah J.R.P., Abdul Kadir M.R. Assessment of compressive failure process of cortical bone materials using damage-based model. J. Mech. Behav. Biomed. Mater. 2017;66:11. doi: 10.1016/j.jmbbm.2016.10.014. PubMed DOI
Hua Y., Gu L., Watanabe H. Micromechanical analysis of nanoparticle-reinforced dental composites. Int. J. Eng. Sci. 2013;69:69–76. doi: 10.1016/j.ijengsci.2013.04.001. DOI
De Souza Venter S.A., Fávaro S.L., Radovanovic E., Girotto E.M. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid. Mat. Res. 2013;16:898–902. doi: 10.1590/S1516-14392013005000089. DOI
Hochstetter G., Jimenez A., Cano J.P., Felder E. An attempt to determine the true stress—Strain curves of amorphous polymers by nanoindentation. Tribol. Int. 2003;36:973–985. doi: 10.1016/S0301-679X(03)00107-5. DOI
Haward R.N. The derivation of a strain hardening modulus from true stress–strain curves for thermoplastics. Polymer. 1994;35:3858–3862. doi: 10.1016/0032-3861(94)90268-2. DOI