Overexpression of TET dioxygenases in seminomas associates with low levels of DNA methylation and hydroxymethylation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MC_U120092689
Medical Research Council - United Kingdom
MC_US_A652_5PY70
Medical Research Council - United Kingdom
PubMed
28218476
PubMed Central
PMC5503132
DOI
10.1002/mc.22638
Knihovny.cz E-zdroje
- Klíčová slova
- 5-hydroxymethylcytosine, 5-methylcytosine, TET1, germ cell tumor, seminoma,
- MeSH
- 5-methylcytosin analogy a deriváty analýza MeSH
- dioxygenasy analýza genetika MeSH
- DNA vazebné proteiny analýza genetika MeSH
- dospělí MeSH
- lidé MeSH
- metylace DNA * MeSH
- oxygenasy se smíšenou funkcí analýza genetika MeSH
- protoonkogenní proteiny analýza genetika MeSH
- regulace genové exprese u nádorů MeSH
- seminom genetika patologie MeSH
- testikulární nádory genetika patologie MeSH
- testis metabolismus patologie MeSH
- upregulace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-hydroxymethylcytosine MeSH Prohlížeč
- 5-methylcytosin MeSH
- dioxygenasy MeSH
- DNA vazebné proteiny MeSH
- oxygenasy se smíšenou funkcí MeSH
- protoonkogenní proteiny MeSH
- TET1 protein, human MeSH Prohlížeč
- TET2 protein, human MeSH Prohlížeč
- TET3 protein, human MeSH Prohlížeč
Germ cell tumors and particularly seminomas reflect the epigenomic features of their parental primordial germ cells (PGCs), including genomic DNA hypomethylation and expression of pluripotent cell markers. Because the DNA hypomethylation might be a result of TET dioxygenase activity, we examined expression of TET1-3 enzymes and the level of their product, 5-hydroxymethylcytosine (5hmC), in a panel of histologically characterized seminomas and non-seminomatous germ cell tumors. Expression of TET dioxygenase mRNAs was quantified by real-time PCR. TET1 expression and the level of 5hmC were examined immunohistochemically. Quantitative assessment of 5-methylcytosine (5mC) and 5hmC levels was done by the liquid chromatography-mass spectroscopy technique. We found highly increased expression of TET1 dioxygenase in most seminomas and strong TET1 staining in seminoma cells. Isocitrate dehydrogenase 1 and 2 mutations were not detected, suggesting the enzymatic activity of TET1. The levels of 5mC and 5hmC in seminomas were found decreased in comparison to non-seminomatous germ cell tumors and healthy testicular tissue. We propose that TET1 expression should be studied as a potential marker of seminomas and mixed germ cell tumors and we suggest that elevated expression of TET dioxygenase enzymes is associated with the maintenance of low DNA methylation levels in seminomas. This "anti-methylator" phenotype of seminomas is in contrast to the CpG island methylator phenotype (CIMP) observed in a fraction of tumors of various types.
Zobrazit více v PubMed
Ehrlich M, Wang RY. 5-Methylcytosine in eukaryotic DNA. Science. 1981;212:1350–7. PubMed
Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic acids research. 1982;10:2709–21. PubMed PMC
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92. PubMed
Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer research. 1986;46:2917–22. PubMed
Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature reviews Genetics. 2002;3:415–28. PubMed
Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nature reviews Cancer. 2011;11:726–34. PubMed PMC
Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997;277:1996–2000. PubMed
Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nature reviews Cancer. 2009;9:400–14. PubMed PMC
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92. PubMed PMC
Bird A. DNA methylation patterns and epigenetic memory. Genes & development. 2002;16:6–21. PubMed
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:8681–6. PubMed PMC
Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T, et al. Three DNA methylation epigenotypes in human colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16:21–33. PubMed
Exner R, Pulverer W, Diem M, Spaller L, Woltering L, Schreiber M, et al. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers. British journal of cancer. 2015;113:1035–45. PubMed PMC
Van Rijnsoever M, Elsaleh H, Joseph D, McCaul K, Iacopetta B. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9:2898–903. PubMed
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. PubMed PMC
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5. PubMed PMC
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3. PubMed PMC
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7. PubMed PMC
Hill PW, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics. 2014;104:324–33. PubMed
Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32:663–9. PubMed PMC
Neri F, Dettori D, Incarnato D, Krepelova A, Rapelli S, Maldotti M, et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene. 2015;34:4168–76. PubMed
Munari E, Chaux A, Vaghasia AM, Taheri D, Karram S, Bezerra SM, et al. Global 5-Hydroxymethylcytosine Levels Are Profoundly Reduced in Multiple Genitourinary Malignancies. PloS one. 2016;11:e0146302. PubMed PMC
Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26:934–42. PubMed
Ko M, An J, Pastor WA, Koralov SB, Rajewsky K, Rao A. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunological reviews. 2015;263:6–21. PubMed PMC
Yamazaki J, Jelinek J, Lu Y, Cesaroni M, Madzo J, Neumann F, et al. TET2 Mutations Affect Non-CpG Island DNA Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic Leukemia. Cancer research. 2015;75:2833–43. PubMed PMC
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. PubMed PMC
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. The New England journal of medicine. 2009;360:765–73. PubMed PMC
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83. PubMed PMC
Duncan CG, Barwick BG, Jin G, Rago C, Kapoor-Vazirani P, Powell DR, et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome research. 2012;22:2339–55. PubMed PMC
Netto GJ, Nakai Y, Nakayama M, Jadallah S, Toubaji A, Nonomura N, et al. Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2008;21:1337–44. PubMed PMC
Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, et al. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PloS one. 2013;8:e82881. PubMed PMC
Kristensen DG, Nielsen JE, Jorgensen A, Skakkebaek NE, Rajpert-De Meyts E, Almstrup K. Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. British journal of cancer. 2014;110:668–78. PubMed PMC
Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Human reproduction update. 2006;12:303–23. PubMed
Kristensen DG, Skakkebaek NE, Rajpert-De Meyts E, Almstrup K. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells. The International journal of developmental biology. 2013;57:309–17. PubMed
Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a broader perspective. Nature reviews Cancer. 2005;5:210–22. PubMed
Wermann H, Stoop H, Gillis AJ, Honecker F, van Gurp RJ, Ammerpohl O, et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. The Journal of pathology. 2010;221:433–42. PubMed
Almstrup K, Hoei-Hansen CE, Nielsen JE, Wirkner U, Ansorge W, Skakkebaek NE, et al. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. British journal of cancer. 2005;92:1934–41. PubMed PMC
Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, et al. Oct4 is required for primordial germ cell survival. EMBO reports. 2004;5:1078–83. PubMed PMC
Gillis AJ, Stoop H, Biermann K, van Gurp RJ, Swartzman E, Cribbes S, et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. International journal of andrology. 2011;34:e160–74. PubMed
Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer research. 2003;63:2244–50. PubMed
Rajpert-De Meyts E, Hanstein R, Jorgensen N, Graem N, Vogt PH, Skakkebaek NE. Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Human reproduction. 2004;19:1338–44. PubMed
Almstrup K, Hoei-Hansen CE, Wirkner U, Blake J, Schwager C, Ansorge W, et al. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer research. 2004;64:4736–43. PubMed
Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, et al. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology. 2005;47:48–56. PubMed
Cao D, Li J, Guo CC, Allan RW, Humphrey PA. SALL4 is a novel diagnostic marker for testicular germ cell tumors. The American journal of surgical pathology. 2009;33:1065–77. PubMed
Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell stem cell. 2011;8:200–13. PubMed PMC
Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature. 2012;492:443–7. PubMed PMC
Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. European urology. 2016 PubMed
Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer . TNM classification of malignant tumours. 7th ed. Chichester, West Sussex, UK; Hoboken, NJ: Wiley-Blackwell; 2010.
Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D'Souza Z, et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature cell biology. 2016;18:225–33. PubMed PMC
Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y. Role of Tet1 in erasure of genomic imprinting. Nature. 2013;504:460–4. PubMed PMC
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer cell. 2011;19:17–30. PubMed PMC
Almstrup K, Nielsen JE, Mlynarska O, Jansen MT, Jorgensen A, Skakkebaek NE, et al. Carcinoma in situ testis displays permissive chromatin modifications similar to immature foetal germ cells. British journal of cancer. 2010;103:1269–76. PubMed PMC
Ulbright TM. The most common, clinically significant misdiagnoses in testicular tumor pathology, and how to avoid them. Advances in anatomic pathology. 2008;15:18–27. PubMed
Chen BF, Gu S, Suen YK, Li L, Chan WY. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics. 2014;9:119–28. PubMed PMC
Nettersheim D, Jostes S, Sharma R, Schneider S, Hofmann A, Ferreira HJ, et al. BMP Inhibition in Seminomas Initiates Acquisition of Pluripotency via NODAL Signaling Resulting in Reprogramming to an Embryonal Carcinoma. PLoS genetics. 2015;11:e1005415. PubMed PMC
Cheung HH, Yang Y, Lee TL, Rennert O, Chan WY. Hypermethylation of genes in testicular embryonal carcinomas. British journal of cancer. 2016;114:230–6. PubMed PMC
Korkola JE, Houldsworth J, Dobrzynski D, Olshen AB, Reuter VE, Bosl GJ, et al. Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene. 2005;24:5101–7. PubMed
Korkola JE, Houldsworth J, Feldman DR, Olshen AB, Qin LX, Patil S, et al. Identification and validation of a gene expression signature that predicts outcome in adult men with germ cell tumors. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27:5240–7. PubMed PMC
Korkola JE, Houldsworth J, Chadalavada RS, Olshen AB, Dobrzynski D, Reuter VE, et al. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer research. 2006;66:820–7. PubMed
Herbst H, Sauter M, Kuhler-Obbarius C, Loning T, Mueller-Lantzsch N. Human endogenous retrovirus (HERV)-K transcripts in germ cell and trophoblastic tumours. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 1998;106:216–20. PubMed
Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K, et al. Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic acids research. 2010;38:2229–46. PubMed PMC
Galli UM, Sauter M, Lecher B, Maurer S, Herbst H, Roemer K, et al. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene. 2005;24:3223–8. PubMed
Trejbalova K, Blazkova J, Matouskova M, Kucerova D, Pecnova L, Vernerova Z, et al. Epigenetic regulation of transcription and splicing of syncytins, fusogenic glycoproteins of retroviral origin. Nucleic acids research. 2011;39:8728–39. PubMed PMC
Matouskova M, Blazkova J, Pajer P, Pavlicek A, Hejnar J. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Experimental cell research. 2006;312:1011–20. PubMed
Tubio JM, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345:1251343. PubMed PMC
Rajpert-De Meyts E, Nielsen JE, Skakkebaek NE, Almstrup K. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society. 2015;53:177–88. PubMed
Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor