Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, komentáře
PubMed
28956829
PubMed Central
PMC5691628
DOI
10.3390/v9100276
PII: v9100276
Knihovny.cz E-zdroje
- Klíčová slova
- ancient DNA, evolution, molecular clock, phylogeny, smallpox, variola virus,
- MeSH
- fylogeneze MeSH
- genom virový MeSH
- lidé MeSH
- molekulární evoluce MeSH
- muzea MeSH
- pravé neštovice * MeSH
- virus varioly genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- Geografické názvy
- Česká republika MeSH
The complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937. We therefore suggest that the age of the common ancestor of currently available VARV genomes most likely dates to late 16th and early 17th centuries and not ~1350 AD.
Zobrazit více v PubMed
Pajer P., Dresler J., Kabíckova H., Písa L., Aganov P., Fucik K., Elleder D., Hron T., Kuzelka V., Velemínsky P., et al. Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses. 2017;9:200. doi: 10.3390/v9080200. PubMed DOI PMC
Duggan A.T., Perdomo M.F., Piombino-Mascali D., Marciniak S., Poinar D., Emery M.V., Buchmann J.P., Duchêne S., Jankauskas R., Humphreys M., et al. 17th Century Variola Virus Reveals the Recent History of Smallpox. Curr. Biol. 2016;26:1–6. doi: 10.1016/j.cub.2016.10.061. PubMed DOI PMC
Smithson C., Imbery J., Upton C. Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses. 2017;9:253. doi: 10.3390/v9090253. PubMed DOI PMC
Bada J.L. Amino-acid racemization dating of fossil bones. Annu. Rev. Earth Planet. Sci. 1985;13:241–268. doi: 10.1146/annurev.ea.13.050185.001325. DOI
Smith G.G., Williams K.M., Wonnacott D.M. Factors affecting the rate of racemization of amino acids and their significance to geochronology. J. Org. Chem. 1978;43:1–5. doi: 10.1021/jo00395a001. DOI
Babkin I.V., Babkina I.N. The origin of the variola virus. Viruses. 2015;7:1100–1112. doi: 10.3390/v7031100. PubMed DOI PMC
Li Y., Carroll D.S., Gardner S.N., Walsh M.C., Vitalis E.A., Damon I.K. On the origin of smallpox: Correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA. 2007;104:15787–15792. doi: 10.1073/pnas.0609268104. PubMed DOI PMC
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evolut. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Kerr P.J., Kitchen A., Holmes E.C. The Origin and Phylodynamics of Rabbit Hemorrhagic Disease virus. J. Virol. 2009;83:12129–12138. doi: 10.1128/JVI.01523-09. PubMed DOI PMC
Wertheim J.O. The re-emergence of H1N1 influenza virus in 1977: A cautionary tale for estimating divergence times using biologically unrealistic sampling dates. PLoS ONE. 2010;5:e11184. doi: 10.1371/journal.pone.0011184. PubMed DOI PMC
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Rambaut A., Lam T.T., Carvalho L.M., Pybus O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) Virus Evolut. 2016;2:vew007. doi: 10.1093/ve/vew007. PubMed DOI PMC