Allogeneic hematopoietic stem cell transplantation for adult patients with t(4;11)(q21;q23) KMT2A/AFF1 B-cell precursor acute lymphoblastic leukemia in first complete remission: impact of pretransplant measurable residual disease (MRD) status. An analysis from the Acute Leukemia Working Party of the EBMT

. 2021 Aug ; 35 (8) : 2232-2242. [epub] 20210204

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid33542481
Odkazy

PubMed 33542481
DOI 10.1038/s41375-021-01135-2
PII: 10.1038/s41375-021-01135-2
Knihovny.cz E-zdroje

Adult B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with t(4;11)(q21;q23);KMT2A/AFF1 is a poor-prognosis entity. This registry-based study was aimed to analyze outcome of patients with t(4;11) BCP-ALL treated with allogeneic hematopoietic stem cell transplantation (alloHSCT) in first complete remission (CR1) between 2000 and 2017, focusing on the impact of measurable residual disease (MRD) at the time of transplant. Among 151 patients (median age, 38) allotransplanted from either HLA-matched siblings or unrelated donors, leukemia-free survival (LFS) and overall survival (OS) at 2 years were 51% and 60%, whereas relapse incidence (RI) and non-relapse mortality (NRM) were 30% and 20%, respectively. These results were comparable to a cohort of contemporary patients with diploid normal karyotype (NK) BCP-ALL with equivalent inclusion criteria (n = 567). Among patients with evaluable MRD pre-alloHSCT, a negative status was the strongest beneficial factor influencing LFS (hazard ratio [HR] = 0.2, p < 0.001), OS (HR = 0.14, p < 0.001), RI (HR = 0.23, p = 0.001), and NRM (HR = 0.16, p = 0.002), with a similar outcome to MRD-negative NK BCP-ALL patients. In contrast, among patients with detectable pretransplant MRD, outcome in t(4;11) BCP-ALL was inferior to NK BCP-ALL (LFS: 27% vs. 50%, p = 0.02). These results support indication of alloHSCT in CR1 for t(4;11) BCP-ALL patients, provided a negative MRD status is achieved. Conversely, pre-alloHSCT additional therapy is warranted in MRD-positive patients.

Center for Hematopoietic Cell Transplantation Deutsche Klinik für Diagnostik Helios Klinik Wiesbaden Germany

Charles University Hospital Pilsen Czech Republic

CHU Bordeaux Hôpital Haut Lévêque Pessac France

Department d'Hematologie CHU Nantes Nantes France

Department of Bone Marrow Transplantation and Onco Hematology Maria Sklodowska Curie Institute Oncology Center Gliwice Branch Gliwice Poland

Department of Hematology and Oncology Augsburg University Hospital Augsburg Germany

Department of Hematology Hospital Saint Antoine Paris France

Department of Hematology Nijmegen Medical Centre Radboud University Nijmegen The Netherlands

Department of Hematology The 1st Hospital Affiliated to Soochow University Suzhou China

Department of Translational and Precision Medicine Sapienza University Rome Italy

Division of Hematology Hospital St Louis and University Paris Paris France

EBMT Paris Study Office Department of Hematology and Cell Therapy Hôpital Saint Antoine Paris France

Erasmus MC Daniel den Hoed Cancer Centre Rotterdam The Netherlands

Hematology Department Hospital Clínic of Barcelona IDIBAPS University of Barcelona Barcelona Spain

Hematology Division Chaim Sheba Medical Center Tel Hashomer Israel

Hôpital Claude Huriez Lille France

Hôpital Edouard Herriot Lyon France

Nottingham University Hospitals and University of Nottingham Nottingham UK

Stem Cell Transplantation Unit Comprehensive Cancer Center Helsinki University Hospital Helsinki Finland

University Hospital Center Zagreb School of Medicine University of Zagreb Zagreb Croatia

University Hospital Gasthuisberg Leuven Belgium

Zobrazit více v PubMed

Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109:3189–97. DOI

Chiaretti S, Vitale A, Cazzaniga G, Orlando SM, Silvestri D, Fazi P, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013;98:1702–10. DOI

Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccuini W, Lefebvre C, Bidet A, et al. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130:1832–44. DOI

Giebel S, Marks DI, Boissel N, Baron F, Chiaretti S, Ciceri F, et al. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 2019;54:798–809. DOI

Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47:330–7. DOI

Marks DI, Moorman AV, Chilton L, Paietta E, Enshaie A, DeWald G, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98:945–52. DOI

Gökbuget N, Dombret H, Giebel S, Bruggemann M, Doubek M, Foà R, et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Hematology. 2019;24:337–48. DOI

Pavlů J, Labopin M, Niittyvuopio R, Socié G, Yakoub-Agha I, Wu D, et al. Measurable residual disease at myeloablative allogeneic transplantation in adults with acute lymphoblastic leukemia: a retrospective registry study on 2780 patients from the acute leukemia working party of the EBMT. J Hematol Oncol. 2019;12:108. DOI

Czyz A, Nagler A. The role of measurable residual disease (MRD) in hematopoietic stem cell transplantation for hematological malignancies focusing on acute leukemia. Int J Mol Sci. 2019;20:E5362. DOI

Nagler A, Baron F, Labopin M, Polge E, Esteve J, Bazarbachi A, et al. Measurable residual disease testing for acute leukemia in EBMT centers: a survey on behalf of the ALWP of the EBMT. Bone Marrow Transplant. 2020. https://doi.org/10.1038/s41409-020-01005-y .

Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695–706. DOI

Fine JP, Gray RJ. A proportional hazards model for subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509. DOI

Holowiecki J, Krawczyk-Kulis M, Giebel S, Jagoda K, Stella-Holowiecka B, Piatkowska-Jakubas B, et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br J Haematol. 2008;142:227–37. DOI

Bruggemann M, Raff T, Flohr T, Gökbuget N, Nakao M, Droese J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107:1116–23. DOI

Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123:3739–49. DOI

Gökbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120:1868–2876. DOI

Dhédin N, Huynh A, Maury S, Tabrizi R, Beldjord K, Asnafi V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125:2486–96. DOI

Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522–31. DOI

Maffini E, Saraceni F, Lanza F. Treatment of adult patients with relapsed/refractory B-cell Philadelphia-negative acute lymphoblastic. Leuk Clin Hematol Int. 2019;1:85–93.

Haddox CL, Mangaonkar AA, Chen D, Shi M, He R, Oliveira JL, et al. Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis. Blood Cancer J. 2017;7:e607. DOI

Balducci E, Nivaggioni V, Boudjarane J, Bouriche L, Rahal I, Bernot D, et al. Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy. Ann Hematol. 2017;96:1579–81. DOI

Rayes A, McMasters RL, O’Brien MM. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer. 2016;63:1113–5. DOI

Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. DOI

Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T cell therapy. Blood. 2016;127:2406–10. DOI

Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125:2474–87. DOI

Marks DI, Kebriaei P, Stelljes M, Gökbuget N, Kantarjian H, Advani AS, et al. Outcomes of allogeneic stem cell transplantation after inotuzumab ozogamicin treatment for relapsed or refractory acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2019;25:1720–9. DOI

Jabbour E, Gökbuget N, Advani A, Stelljes M, Stock W, Liedtke M, et al. Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leuk Res. 2020;88:106283. DOI

Jabbour E, Roberts KG, Sasaki K, Zhao Y, Qu C, Gu Z, et al. Inotuzumab Ozogamicin (Ino) may overcome the impact of Philadelphia chromosome (Ph)-like phenotype in adult patients (pts) with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). Blood. 2019 Suppl 1;134.

Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141:827–39. DOI

Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, et al. MLL-rearranged acute lymphoblastic leukemias activate bcl-2 through h3k79 methylation and are sensitive to the bcl-2-specific antagonist abt-199. Cell Rep. 2015;13:2715–27. DOI

Godfrey L, Kerry J, Thorne R, Repapi E, Davies JO, Tapia M, et al. MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol. 2017;47:64–75. DOI

Khaw SL, Suryani S, Evans K, Richmond J, Robbins A, Kurmasheva RT, et al. Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood. 2016;128:1382–95. DOI

Frismantas V, Dobay MP, Rinaldi A, Tchinda J, Dunn SH, Kunz J, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129:e26–37. DOI

Giebel S, Labopin M, Socié G, Beelen D, Browne P, Volin L, et al. Improving results of allogeneic hematopoietic cell transplantation for adults with acute lymphoblastic leukemia in first complete remission: an analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2017;102:139–49. DOI

Tomblyn MB, Arora M, Baker KS, Blazar BR, Brunstein CG, Burns LJ, et al. Myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia: analysis of graft sources and long-term outcome. J Clin Oncol. 2009;27:3634–41. DOI

Nishiwaki S, Miyamura K, Ohashi K, Kurokawa M, Taniguchi S, Fukuda T, et al. Impact of a donor source on adult Philadelphia chromosome-negative acute lymphoblastic leukemia: a retrospective analysis from the Adult Acute Lymphoblastic Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Ann Oncol. 2013;24:1594–602. DOI

Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50. DOI

Giebel S, Boumendil A, Labopin M, Seesaghur A, Baron F, Ciceri F, et al. Trends in the use of hematopoietic stem cell transplantation for adults with acute lymphoblastic leukemia in Europe: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Ann Hematol. 2019;98:2389–98. DOI

Shem-Tov N, Peczynski C, Labopin M, Itälä-Remes M, Blaise D, Labussière-Wallet H, et al. Haploidentical vs. unrelated allogeneic stem cell transplantation for acute lymphoblastic leukemia in first complete remission: on behalf of the ALWP of the EBMT. Leukemia. 2020;34:283–92. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...