Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
39561274
DOI
10.1158/1078-0432.ccr-24-2599
PII: 750165
Knihovny.cz E-zdroje
- MeSH
- deep learning * MeSH
- dospělí MeSH
- Kaplanův-Meierův odhad MeSH
- konvoluční neuronové sítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory kostí * mortalita patologie terapie MeSH
- nekróza patologie MeSH
- neoadjuvantní terapie MeSH
- neuronové sítě * MeSH
- osteosarkom * mortalita patologie terapie MeSH
- prognóza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep-learning strategies on histology samples to predict outcome for osteosarcoma in the neoadjuvant setting. EXPERIMENTAL DESIGN: Our study relies on a training cohort from New York University (NYU; New York, NY) and an external cohort from Charles University (Prague, Czechia). We trained and validated the performance of a supervised approach that integrates neural network predictions of necrosis/tumor content and compared predicted overall survival (OS) using Kaplan-Meier curves. Furthermore, we explored morphology-based supervised and self-supervised approaches to determine whether intrinsic histomorphologic features could serve as a potential marker for OS in the neoadjuvant setting. RESULTS: Excellent correlation between the trained network and pathologists was obtained for the quantification of necrosis content (R2 = 0.899; r = 0.949; P < 0.0001). OS prediction cutoffs were consistent between pathologists and the neural network (22% and 30% of necrosis, respectively). The morphology-based supervised approach predicted OS; P = 0.0028, HR = 2.43 (1.10-5.38). The self-supervised approach corroborated the findings with clusters enriched in necrosis, fibroblastic stroma, and osteoblastic morphology associating with better OS [log-2 hazard ratio (lg2 HR); -2.366; -1.164; -1.175; 95% confidence interval, (-2.996 to -0.514)]. Viable/partially viable tumor and fat necrosis were associated with worse OS [lg2 HR; 1.287; 0.822; 0.828; 95% confidence interval, (0.38-1.974)]. CONCLUSIONS: Neural networks can be used to automatically estimate the necrosis to tumor ratio, a quantitative metric predictive of survival. Furthermore, we identified alternate histomorphologic biomarkers specific to the necrotic and tumor regions, which could serve as predictors.
Applied Bioinformatics Laboratories New York University School of Medicine New York New York
Cancer Research UK Scotland Institute Glasgow Scotland
Department of Pathology NYU Langone Grossman School of Medicine New York New York
School of Cancer Sciences University of Glasgow Glasgow Scotland
School of Computing Science University of Glasgow Glasgow Scotland
Citace poskytuje Crossref.org