Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions

. 2023 ; 14 () : 1125672. [epub] 20230403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37077626

Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.

Zobrazit více v PubMed

Abdel-Ghani A. H., Sharma R., Wabila C., Dhanagond S., Owais S. J., Duwayri M. A., et al. . (2019). Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC Plant Biol. 19, 216. doi: 10.1186/s12870-019-1828-5 PubMed DOI PMC

Acharya B. R., Roy Choudhury S., Estelle A. B., Vijayakumar A., Zhu C., Hovis L., et al. . (2017). Optimization of phenotyping assays for the model monocot setaria viridis. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02172 PubMed DOI PMC

Ahmad M. Z., Sana A., Jamil A., Nasir J. A., Ahmed S., Hameed M. U., et al. . (2019). A genome-wide approach to the comprehensive analysis of GASA gene family in glycine max. Plant Mol. Biol. 100, 607–620. doi: 10.1007/s11103-019-00883-1 PubMed DOI

Ahrazem O., Rubio-Moraga A., Trapero-Mozos A., Climent M. F. L., Gómez-Cadenas A., Gómez-Gómez L. (2015). Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in arabidopsis while alters anchor root formation. Plant Sci. 234, 60–73. doi: 10.1016/j.plantsci.2015.02.004 PubMed DOI

Alallaq S., Ranjan A., Brunoni F., Novák O., Lakehal A., Bellini C. (2020). Red light controls adventitious root regeneration by modulating hormone homeostasis in picea abies seedlings. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.586140 PubMed DOI PMC

Ambawat S., Sharma P., Yadav N. R., Yadav R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiol. Mol. Biol. Plants 19, 307–321. doi: 10.1007/s12298-013-0179-1 PubMed DOI PMC

Anscombe F. J., Tukey J. W. (1963). The Examination and Analysis of Residuals. Technometrics 5 (2), 141–160. doi: 10.1080/00401706.1963.10490071 DOI

Barrs H. D., Weatherley P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves by h. d. barrs* and p. e. weatherleyt. Aust. J. Biol. Sci 15 (3), 413–428. doi: 10.1071/BI9620413 DOI

Bayer M. M., Rapazote-flores P., Ganal M., Hedley P. E., Macaulay M., Plieske J., et al. . (2017). Development and evaluation of a barley 50k iSelect SNP array. Front. Plant Sci. 8, 1–10. doi: 10.3389/fpls.2017.01792 PubMed DOI PMC

Benitez-Alfonso Y., Jackson D. (2009). Redox homeostasis regulates plasmodesmal communication in arabidopsis meristems. Plant Signaling Behav. 4, 655–659. doi: 10.4161/psb.4.7.8992 PubMed DOI PMC

Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Society. Ser. B (Methodological) 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI

Bernardo L., Morcia C., Carletti P., Ghizzoni R., Badeck F. W., Rizza F., et al. . (2017). Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J. Proteomics 169, 21–32. doi: 10.1016/j.jprot.2017.03.024 PubMed DOI

Browning S. R., Browning B. L. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097. doi: 10.1086/521987 PubMed DOI PMC

Browning B. L., Zhou Y., Browning S. R. (2018). A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348. doi: 10.1016/j.ajhg.2018.07.015 PubMed DOI PMC

Chai G., Li C., Xu F., Li Y., Shi X., Wang Y., et al. . (2018). Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum l.). BMC Plant Biol. 18, 41. doi: 10.1186/s12870-018-1256-y PubMed DOI PMC

Cheng W., Yin S., Tu Y., Mei H., Wang Y., Yang Y. (2020). SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato. Plant Mol. Biol. 102, 537–551. doi: 10.1007/s11103-020-00963-7 PubMed DOI

Choo T., Ho K. M., Martin R. A. (2001). Genetic analysis of a hulless × covered cross of barley using doubled-haploid lines. Crop Sci. 41, 1021–1026. doi: 10.2135/cropsci2001.4141021x DOI

Colmsee C., Beier S., Himmelbach A., Schmutzer T., Stein N., Scholz U., et al. . (2015). BARLEX – the barley draft genome explorer. Mol. Plant 8, 964–966. doi: 10.1016/j.molp.2015.03.009 PubMed DOI

Couchoud M., Der C., Girodet S., Vernoud V., Prudent M., Leborgne-Castel N. (2019). Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of medicago truncatula in a genotype-dependent manner. BMC Plant Biol. 19, 221. doi: 10.1186/s12870-019-1814-y PubMed DOI PMC

Del Bianco M., Kepinski S. (2018). Building a future with root architecture. J. Exp. Bot. 69, 5319–5323. doi: 10.1093/jxb/ery390 PubMed DOI PMC

Dickin E., Steele K., Edwards-Jones G., Wright D. (2012). Agronomic diversity of naked barley (Hordeum vulgare l.): a potential resource for breeding new food barley for Europe. Euphytica 184, 85–99. doi: 10.1007/s10681-011-0567-y DOI

Dockter C., Gruszka D., Braumann I., Druka A., Druka I., Franckowiak J., et al. . (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol. 166, 1912–1927. doi: 10.1104/pp.114.250738 PubMed DOI PMC

Dong A., Yang Y., Liu S., Zenda T., Liu X., Wang Y., et al. . (2020). Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. Biotechnol. Biotechnol. Equip. 34, 763–780. doi: 10.1080/13102818.2020.1805015 DOI

Dramé K. N., Passaquet C., Repellin A., Zuily-Fodil Y. (2013). Cloning, characterization and differential expression of a bowman–birk inhibitor during progressive water deficit and subsequent recovery in peanut (Arachis hypogaea) leaves. J. Plant Physiol. 170, 225–229. doi: 10.1016/j.jplph.2012.09.005 PubMed DOI

Du Y., Zhao Q., Chen L., Yao X., Zhang W., Zhang B., et al. . (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 146, 1–12. doi: 10.1016/j.plaphy.2019.11.003 PubMed DOI

Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. (2010). MYB transcription factors in arabidopsis. Trends Plant Sci. 15, 573–581. doi: 10.1016/j.tplants.2010.06.005 PubMed DOI

Ehdaie B., Layne A. P., Waines J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186, 219–232. doi: 10.1007/s10681-011-0585-9 DOI

Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x PubMed DOI

Fang C., Ma Y., Wu S., Liu Z., Wang Z., Yang R., et al. . (2017). Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 18, 161. doi: 10.1186/s13059-017-1289-9 PubMed DOI PMC

Figaj D., Ambroziak P., Przepiora T., Skorko-Glonek J. (2019). The role of proteases in the virulence of plant pathogenic bacteria. IJMS 20, 672. doi: 10.3390/ijms20030672 PubMed DOI PMC

Galkovskyi T., Mileyko Y., Bucksch A., Moore B., Symonova O., Price C. A., et al. . (2012). GiA roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12, 116. doi: 10.1186/1471-2229-12-116 PubMed DOI PMC

Gardiner J., Overall R., Marc J. (2011). Plant microtubule cytoskeleton complexity: microtubule arrays as fractals. J. Exp. Bot. 63, 635–642. doi: 10.1093/jxb/err312 PubMed DOI

Geng D., Chen P., Shen X., Zhang Y., Li X., Jiang L., et al. . (2018). MDMYB88 and MDMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiol. 178, 1296–1309. doi: 10.1104/pp.18.00502 PubMed DOI PMC

Gilmour A. R., Thompson R., Cullis B. R. (1995). Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51 (4), 1440–1450. doi: 10.2307/2533274 DOI

González R. M., Iusem N. D. (2014). Twenty years of research on asr (ABA-stress-ripening) genes and proteins. Planta 239, 941–949. doi: 10.1007/s00425-014-2039-9 PubMed DOI

Grzesiak M. T., Hordyńska N., Maksymowicz A., Grzesiak S., Szechyńska-Hebda M. (2019). Variation among spring wheat (Triticum aestivum l.) genotypes in response to the drought stress. II–root system structure. Plants 8 (12), 584. doi: 10.3390/plants8120584 PubMed DOI PMC

Gudesblat G. E., Russinova E. (2011). Plants grow on brassinosteroids. Curr. Opin. Plant Biol. 14, 530–537. doi: 10.1016/j.pbi.2011.05.004 PubMed DOI

Guo Y., Huang C., Xie Y., Song F., Zhou X. (2010). A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232, 1499–1509. doi: 10.1007/s00425-010-1271-1 PubMed DOI

Habte E., Müller L. M., Shtaya M., Davis S. J., Von Korff M. (2014). Osmotic stress at the barley root affects expression of circadian clock genes in the shoot: Osmotic stress changes the barley circadian clock. Plant Cell Environ. 37, 1321–1337. doi: 10.1111/pce.12242 PubMed DOI

Hansen S. F., Harholt J., Oikawa A. (2012). And scheller, h Plant glycosyltransferases beyond CAZy: A perspective on DUF families V. Front. Plant Sci. 3. doi: 10.3389/fpls.2012.00059 PubMed DOI PMC

Hill W. G., Weir B. S. (1988). Variances and covariances of squared linkage disequilibria in finite populations. Theor. Popul Biol. 33, 54–78. doi: 10.1016/0040-5809(88)90004-4 PubMed DOI

Hong Y., Zhang H., Huang L., Li D., Song F. (2016). Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00004 PubMed DOI PMC

Huang C.-T., Klos K. E., Huang Y.-F. (2020). Genome-wide association study reveals the genetic architecture of seed vigor in oats. G3 Genes|Genomes|Genetics 10, 4489–4503. doi: 10.1534/g3.120.401602 PubMed DOI PMC

Huang M., Liu X., Zhou Y., Summers R. M., Zhang Z. (2019). BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience 8 (2). doi: 10.1093/gigascience/giy154 PubMed DOI PMC

Hyun T. K., van der Graaff E., Albacete A., Eom S. H., Großkinsky D. K., Böhm H., et al. . (2014). The arabidopsis PLAT domain Protein1 is critically involved in abiotic stress tolerance. PloS One 9, e112946. doi: 10.1371/journal.pone.0112946 PubMed DOI PMC

Iantcheva A., Boycheva I., Vassileva V., Revalska M., Zechirov G. (2015). Cyclin-like f-box protein plays a role in growth and development of the three model species medicago truncatula, lotus japonicus, and arabidopsis thaliana. RRB 6, 117–130. doi: 10.2147/RRB.S84753 PubMed DOI

Iwama A., Yamashino T., Tanaka Y., Sakakibara H., Kakimoto T., Sato S., et al. . (2006). AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in arabidopsis thaliana. Plant Cell Physiol. 48, 375–380. doi: 10.1093/pcp/pcl065 PubMed DOI

Iwata S., Miyazawa Y., Fujii N., Takahashi H. (2013). MIZ1-regulated hydrotropism functions in the growth and survival of arabidopsis thaliana under natural conditions. Ann. Bot. 112, 103–114. doi: 10.1093/aob/mct098 PubMed DOI PMC

Jamieson P. D., Martin R. J., Francis G. S. (1995). Drought influences on grain yield of barley, wheat, and maize. New Z. J. Crop Hortic. Sci. 23, 55–66. doi: 10.1080/01140671.1995.9513868 DOI

Jaswanthi N., Krishna M. S. R., Sahitya U. L. (2019). Apoplast proteomic analysis reveals drought stress-responsive protein datasets in chilli (Capsicum annuum L.). Data Brief 25, 104041. doi: 10.1016/j.dib.2019.104041 PubMed DOI PMC

Jia Z., Liu Y., Gruber B. D., Neumann K., Kilian B., Graner A., et al. . (2019). Genetic dissection of root system architectural traits in spring barley. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00400 PubMed DOI PMC

Jiang T., Fountain J., Davis G., Kemerait R., Scully B., Lee R. D., et al. . (2012). Root morphology and gene expression analysis in response to drought stress in maize (Zea mays). Plant Mol. Biol. Rep. 30, 360–369. doi: 10.1007/s11105-011-0347-9 DOI

Jui P. Y., Choo T. M., Ho K. M., Konishi T., Martin R. A. (1997). Genetic analysis of a two-row × six-row cross of barley using doubled-haploid lines. Theor. Appl. Genet. 94, 549–556. doi: 10.1007/s001220050450 DOI

Kapulnik Y., Koltai H. (2014). Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol. 166, 560–569. doi: 10.1104/pp.114.244939 PubMed DOI PMC

Kaur V., Yadav S. K., Wankhede D. P., Pulivendula P., Kumar A., Chinnusamy V. (2020). Cloning and characterization of a gene encoding MIZ1, a domain of unknown function protein and its role in salt and drought stress in rice. Protoplasma 257, 475–487. doi: 10.1007/s00709-019-01452-5 PubMed DOI

Khodaeiaminjan M., Bergougnoux V. (2021). Barley grain development during drought stress: Current status and perspectives. Cereal Grains (IntechOpen), vol. 1. doi: 10.5772/intechopen.97183 DOI

Klie S., Nikoloski Z. (2012). The choice between MapMan and gene ontology for automated gene function prediction in plant science. Front. Gene. 3. doi: 10.3389/fgene.2012.00115 PubMed DOI PMC

Kozlova L. V., Gorshkov O. V., Mokshina N. E., Gorshkova T. A. (2015). And Differential expression of α-l-arabinofuranosidases during maize (Zea mays l.) root elongation. Planta 241, 1159–1172. doi: 10.1007/s00425-015-2244-1 PubMed DOI

Kristensen P. S., Jahoor A., Andersen J. R., Cericola F., Orabi J., Janss L. L., et al. . (2018). Genome-wide association studies and comparison of models and cross-validation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00069 PubMed DOI PMC

Ksouri N., Jiménez S., Wells C. E., Contreras-Moreira B., Gogorcena Y. (2016). Transcriptional responses in root and leaf of prunus persica under drought stress using RNA sequencing. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01715 PubMed DOI PMC

Kuang L., Shen Q., Wu L., Yu J., Fu L., Wu D., et al. . (2019). Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environ. Exp. Bot. 160, 59–70. doi: 10.1016/j.envexpbot.2019.01.006 DOI

Kumar A., Dubey A. K., Kumar V., Ansari M. A., Narayan S., Meenakshi, et al. . (2020. a). Overexpression of rice glutaredoxin genes LOC_Os02g40500 and LOC_Os01g27140 regulate plant responses to drought stress. Ecotoxicology Environ. Saf. 200, 110721. doi: 10.1016/j.ecoenv.2020.110721 PubMed DOI

Kumar A., Verma R. P. S., Singh A., Kumar Sharma H., Devi G. (2020. b). “Barley landraces: Ecological heritage for edaphic stress adaptations and sustainable production.” Environ. Sustainability Indic. 6, 100035. doi: 10.1016/j.indic.2020.100035 DOI

Lechner E., Achard P., Vansiri A., Potuschak T., Genschik P. (2006). F-box proteins everywhere. Curr. Opin. Plant Biol. 9, 631–638. doi: 10.1016/j.pbi.2006.09.003 PubMed DOI

Lee D.-K., Chung P. J., Jeong J. S., Jang G., Bang S. W., Jung H., et al. . (2017). The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol. J. 15, 754–764. doi: 10.1111/pbi.12673 PubMed DOI PMC

Leipe D. D., Koonin E. V., Aravind L. (2004). STAND, a class of p-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343, 1–28. doi: 10.1016/j.jmb.2004.08.023 PubMed DOI

Li K.-L., Bai X., Li Y., Cai H., Ji W., Tang L.-L., et al. . (2011). GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J. Plant Physiol. 168, 2153–2160. doi: 10.1016/j.jplph.2011.07.006 PubMed DOI

Lipka A. E., Tian F., Wang Q., Peiffer J., Li M., Bradbury P. J., et al. . (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics 28, 2397–2399. doi: 10.1093/bioinformatics/bts444 PubMed DOI

Liu X., Huang M., Fan B., Buckler E. S., Zhang Z. (2016). Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PloS Genet. 12, e1005767. doi: 10.1371/journal.pgen.1005767 PubMed DOI PMC

Lohse M., Nagel A., Herter T., May P., Schroda M., Zrenner R., et al. . (2014). Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data: Mercator: sequence functional annotation server. Plant Cell Environ. 37, 1250–1258. doi: 10.1111/pce.12231 PubMed DOI

Lynch J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and n acquisition by maize root systems. Ann. Bot. 112, 347–357. doi: 10.1093/aob/mcs293 PubMed DOI PMC

Lynch J. P. (2015). Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant Cell Environ. 38, 1775–1784. doi: 10.1111/pce.12451 PubMed DOI

Lynch J. P., Brown K. M. (2012). New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. B: Biol. Sci. 367, 1598–1604. doi: 10.1098/rstb.2011.0243 PubMed DOI PMC

Lynch J. P., Chimungu J. G., Brown K. M. (2014). Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. J. Exp. Bot. 65, 6155–6166. doi: 10.1093/jxb/eru162 PubMed DOI

Malefo M. B., Mathibela E. O., Crampton B. G., Makgopa M. E. (2020). Investigating the role of bowman-birk serine protease inhibitor in arabidopsis plants under drought stress. Plant Physiol. Biochem. 149, 286–293. doi: 10.1016/j.plaphy.2020.02.007 PubMed DOI

Malik P. L., Janss L., Nielsen L. K., Borum F., Jørgensen H., Eriksen B., et al. . (2019). Breeding for dual-purpose wheat varieties using marker–trait associations for biomass yield and quality traits. Theor. Appl. Genet. 132, 3375–3398. doi: 10.1007/s00122-019-03431-z PubMed DOI

Marroni F., Pinosio S., Zaina G., Fogolari F., Felice N., Cattonaro F., et al. . (2011). Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol dehydrogenase (CAD4) gene. Tree Genet. Genomes 7, 1011–1023. doi: 10.1007/s11295-011-0391-5 DOI

Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C. S., et al. . (2021). Long-read sequence assembly: a technical evaluation in barley. Plant Cell 33 (6), 1888–1906. doi: 10.1093/plcell/koab077 PubMed DOI PMC

Meyer R. C., Weigelt-Fischer K., Knoch D., Heuermann M., Zhao Y., Altmann T. (2021). Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana . J. Exp. Bot. 72, 476–490. doi: 10.1093/jxb/eraa490 PubMed DOI

Mishra M., Mahajan N., Tamhane V. A., Kulkarni M. J., Baldwin I. T., Gupta V. S., et al. . (2012). Stress inducible proteinase inhibitor diversity in capsicum annuum. BMC Plant Biol. 12, 217. doi: 10.1186/1471-2229-12-217 PubMed DOI PMC

Miyazawa Y., Moriwaki T., Uchida M., Kobayashi A., Fujii N., Takahashi H. (2012). Overexpression of MIZU-KUSSEI1 enhances the root hydrotropic response by retaining cell viability under hydrostimulated conditions in arabidopsis thaliana. Plant Cell Physiol. 53, 1926–1933. doi: 10.1093/pcp/pcs129 PubMed DOI

Mohanan M. V., Pushpanathan A., Sasikumar S. P.T., Selvarajan D., Jayanarayanan A. N., R A. K., et al. . (2020). Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. Plant Cell Reports 39 (11), 1581–1594. doi: 10.1007/s00299-020-02585-1 PubMed DOI

Niu Z., Li G., Hu H., Lv J., Zheng Q., Liu J., et al. . (2021). A gene that underwent adaptive evolution, LAC2 (LACCASE), in populus euphratica improves drought tolerance by improving water transport capacity. Hortic. Res. 8, 88. doi: 10.1038/s41438-021-00518-x PubMed DOI PMC

Oyiga B. C., Ogbonnaya F. C., Sharma R. C., Baum M., Léon J., Ballvora A. (2019). Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theor. Appl. Genet. 132, 323–346. doi: 10.1007/s00122-018-3220-5 PubMed DOI PMC

Oyiga B. C., Palczak J., Wojciechowski T., Lynch J. P., Naz A. A., Léon J., et al. . (2020). Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant Cell Environ. 43, 692–711. doi: 10.1111/pce.13683 PubMed DOI

Oyiga B. C., Sharma R. C., Baum M., Ogbonnaya F. C., Léon J., Ballvora A. (2018). Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ. 41, 919–935. doi: 10.1111/pce.12898 PubMed DOI

Pacurar D. I., Pacurar M. L., Lakehal A., Pacurar A. M., Ranjan A., Bellini C. (2017). The arabidopsis Cop9 signalosome subunit 4 (CSN4) is involved in adventitious root formation. Sci. Rep. 7, 628. doi: 10.1038/s41598-017-00744-1 PubMed DOI PMC

Paez-Garcia A., Motes C. M., Scheible W. R., Chen R., Blancaflor E. B., Monteros M. J. (2015). Root traits and phenotyping strategies for plant improvement. Plants 4, 334–355. doi: 10.3390/plants4020334 PubMed DOI PMC

Palta J. A., Yang J. (2014). Crop root system behaviour and yield. Field Crops Res. 165, 1–4. doi: 10.1016/j.fcr.2014.06.024 DOI

Paradis E., Claude J., Strimmer K. (2004). APE: Analyses of phylogenetics and evolution in r language. Bioinformatics 20, 289–290. doi: 10.1093/bioinformatics/btg412 PubMed DOI

Paradis E., Schliep K. (2019). Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in r. Bioinformatics 35, 526–528. doi: 10.1093/bioinformatics/bty633 PubMed DOI

Pasam R. K., Sharma R., Walther A., Özkan H., Graner A., Kilian B. (2014). Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS ONE 9 (1), 129. doi: 10.1371/journal.pone.0116164 PubMed DOI PMC

Pérez-Ramos I. M., Volaire F., Fattet M., Blanchard A., Roumet C. (2013). Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species. Environ. Exp. Bot. 87, 126–136. doi: 10.1016/j.envexpbot.2012.09.004 DOI

Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., et al. . (2016). “Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress,” in: New biotechnology. PubMed

Pourkheirandish M., Komatsuda T. (2007). The importance of barley genetics and domestication in a global perspective. Ann. Bot. 100, 999–1008. doi: 10.1093/aob/mcm139 PubMed DOI PMC

Pritchard J. K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959. doi: 10.1093/genetics/155.2.945 PubMed DOI PMC

R Core Team . (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing. Available at: https://www.R-project.org/.

Remington D. L., Thornsberry J. M., Matsuoka Y., Wilson L. M., Whitt S. R., Doebley J., et al. . (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. U.S.A. 98, 11479–11484. doi: 10.1073/pnas.201394398 PubMed DOI PMC

Richard C., Hickey L. T., Fletcher S., Jennings R., Chenu K., Christopher J. T. (2015). High-throughput phenotyping of seminal root traits in wheat. Plant Methods 11, 13. doi: 10.1186/s13007-015-0055-9 PubMed DOI PMC

Riedelsheimer C., Lisec J., Czedik-Eysenberg A., Sulpice R., Flis A., Grieder C., et al. . (2012). Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. 109, 8872–8877. doi: 10.1073/pnas.1120813109 PubMed DOI PMC

Robinson H., Hickey L., Richard C., Mace E., Kelly A., Borrell A., et al. . (2016). Genomic regions influencing seminal root traits in barley. Plant Genome 9. doi: 10.3835/plantgenome2015.03.0012 PubMed DOI

Sachdeva S., Bharadwaj C., Singh R. K., Jain P. K., Patil B. S., Roorkiwal M., et al. . (2020). Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum l.). PloS One 15, e0234550. doi: 10.1371/journal.pone.0234550 PubMed DOI PMC

Saisho D., Takeda K. (2011). Barley: Emergence as a new research material of crop science. Plant Cell Physiol. 52, 724–727. doi: 10.1093/pcp/pcr049 PubMed DOI

Saitou N., Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4 (4), 406–425. doi: 10.1093/oxfordjournals.molbev.a040454 PubMed DOI

Sallam A., Alqudah A. M., Dawood M. F. A., Baenziger P. S., Börner A. (2019). Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 20 (13), 3137. doi: 10.3390/ijms20133137 PubMed DOI PMC

Schonfeld M. A., Johnson R. C., Carver B. F., Mornhinweg D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Sci. 28, 526–531. doi: 10.2135/cropsci1988.0011183X002800030021x DOI

Schwacke R., Ponce-Soto G. Y., Krause K., Bolger A. M., Arsova B., Hallab A., et al. . (2019). MapMan4: A refined protein classification and annotation framework applicable to multi-omics data analysis. Mol. Plant 12, 879–892. doi: 10.1016/j.molp.2019.01.003 PubMed DOI

Sevilla F., Camejo D., Ortiz-Espín A., Calderón A., Lázaro J. J., Jiménez A. (2015). The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J. Exp. Bot. 66, 2945–2955. doi: 10.1093/jxb/erv146 PubMed DOI

Shan L. E. I., Li C., Chen F., Zhao S., Xia G. (2008). A bowman-birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ. 31, 1128–1137. doi: 10.1111/j.1365-3040.2008.01825.x PubMed DOI

Sharma N. K., Gupta S. K., Dwivedi V., Chattopadhyay D. (2020). Lignin deposition in chickpea root xylem under drought. Plant Signaling Behav. 15, 1754621. doi: 10.1080/15592324.2020.1754621 PubMed DOI PMC

Sharma M., Singh A., Shankar A., Pandey A., Baranwal V., Kapoor S., et al. . (2014). Comprehensive expression analysis of rice armadillo gene family during abiotic stress and development. DNA Res. 21, 267–283. doi: 10.1093/dnares/dst056 PubMed DOI PMC

Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. (2014). Modulation of auxin content in arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 82, 209–217. doi: 10.1016/j.plaphy.2014.06.008 PubMed DOI

Shin J.-H., Blay S., Graham J., McNeney B. (2006). LDheatmap: An r function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J. Stat. Software 16 (3), 1–9. doi: 10.18637/jss.v016.c03 DOI

Singh A. K., Chamovitz D. A. (2019). Role of Cop9 signalosome subunits in the environmental and hormonal balance of plant. Biomolecules 9 (6), 224. doi: 10.3390/biom9060224 PubMed DOI PMC

Srinivasan T., Kumar K. R. R., Kirti P. B. (2009). Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 50, 541–553. doi: 10.1093/pcp/pcp014 PubMed DOI

Stacklies W., Redestig H., Scholz M., Walther D., Selbig J. (2007). pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167. doi: 10.1093/bioinformatics/btm069 PubMed DOI

Steffens B., Rasmussen A. (2016). The physiology of adventitious roots. Plant Physiol. 170, 603–617. doi: 10.1104/pp.15.01360 PubMed DOI PMC

Stich B., Melchinger A. E. (2009). Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and arabidopsis. BMC Genomics 10, 94. doi: 10.1186/1471-2164-10-94 PubMed DOI PMC

Stich B., Möhring J., Piepho H.-P., Heckenberger M., Buckler E. S., Melchinger A. E. (2008). Comparison of mixed-model approaches for association mapping. Genetics 178, 1745–1754. doi: 10.1534/genetics.107.079707 PubMed DOI PMC

Sullivan P., Arendt E., Gallagher E. (2013). The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 29, 124–134. doi: 10.1016/j.tifs.2012.10.005 DOI

Sun H., Tao J., Gu P., Xu G., Zhang Y. (2016). The role of strigolactones in root development. Plant Signal Behav. 11, e1110662–e1110662. doi: 10.1080/15592324.2015.1110662 PubMed DOI PMC

Szkopińska A., Płochocka D. (2005). Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 52, 45–55. doi: 10.18388/abp.2005_3485 PubMed DOI

Tagliotti M. E., Deperi S. I., Bedogni M. C., Huarte M. (2021). Genom … wide association analysis of agronomical and physiological traits linked to drought tolerance in a diverse potatoes (Solanum tuberosum) panel. Plant Breeding. 140, 654–664. doi: 10.1111/pbr.12938 DOI

Tombuloglu H. (2019). Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare l.). J. Plant Biochem. Biotechnol. 28, 14–24. doi: 10.1007/s13562-018-0458-6 DOI

Turner A., Beales J., Faure S., Dunford R. P., Laurie D. A. (2005). The pseudo-response regulator ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034. doi: 10.1126/science.1117619 PubMed DOI

Vadez V., Rao J. S., Bhatnagar-Mathur P., Sharma K. K. (2013). DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut: DREB1A promotes root development in groundnut. Plant Biol. 15, 45–52. doi: 10.1111/j.1438-8677.2012.00588.x PubMed DOI

VanRaden P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980 PubMed DOI

Vaseva I. I., Zehirov G., Kirova E., Simova-Stoilova L. (2016). Transcript profiling of serine- and cysteine protease inhibitors inTriticum aestivumvarieties with different drought tolerance. Cereal Res. Commun. 44, 79–88. doi: 10.1556/0806.43.2015.032 DOI

Verslues P. E., Lasky J. R., Juenger T. E., Liu T.-W., Kumar M. N. (2014). Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in arabidopsis. Plant Physiol. 164, 144–159. doi: 10.1104/pp.113.224014 PubMed DOI PMC

Vessal S., Arefian M., Siddique K. H. M. (2020). Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC Genomics 21 (1), 523. doi: 10.1186/s12864-020-06930-2 PubMed DOI PMC

Virlouvet L., Jacquemot M. P., Gerentes D., Corti H., Bouton S., Gilard F., et al. . (2011). The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol. 157, 917–936. doi: 10.1104/pp.111.176818 PubMed DOI PMC

Vlamis J., Williams D. E. (1962). Ion competition in manganese uptake by barley plants. Plant Physiol. 37, 650–655. doi: 10.1104/pp.37.5.650 PubMed DOI PMC

Voorrips R. E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Heredity 93, 77–78. doi: 10.1093/jhered/93.1.77 PubMed DOI

Wabila C., Neumann K., Kilian B., Radchuk V., Graner A. (2019). A tiered approach to genome-wide association analysis for the adherence of hulls to the caryopsis of barley seeds reveals footprints of selection. BMC Plant Biol. 19, 95. doi: 10.1186/s12870-019-1694-1 PubMed DOI PMC

Waititu J. K., Zhang X., Chen T., Zhang C., Zhao Y., Wang H. (2021). Transcriptome analysis of tolerant and susceptible maize genotypes reveals novel insights about the molecular mechanisms underlying drought responses in leaves. IJMS 22 (13), 6980. doi: 10.3390/ijms22136980 PubMed DOI PMC

Wang G., Cai G., Xu N., Zhang L., Sun X., Guan J., et al. . (2019). Novel DnaJ protein facilitates thermotolerance of transgenic tomatoes. IJMS 20, 367. doi: 10.3390/ijms20020367 PubMed DOI PMC

Wang X.-F., He F.-F., Ma X.-X., Mao C.-Z., Hodgman C., Lu C.-G., et al. . (2011). OsCAND1 is required for crown root emergence in rice. Mol. Plant 4, 289–299. doi: 10.1093/mp/ssq068 PubMed DOI

Wang Y., Wang M., Sun Y., Wang Y., Li T., Chai G., et al. . (2015). FAR5, a fatty acyl-coenzyme a reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum l.). J. Exp. Bot. 66, 1165–1178. doi: 10.1093/jxb/eru457 PubMed DOI PMC

Wang Y., Xu J., He Z., Hu N., Luo W., Liu X., et al. . (2021). BdFAR4, a root-specific fatty acyl-coenzyme a reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon . Plant J. 106, 1468–1483. doi: 10.1111/tpj.15249 PubMed DOI

Wang Y., Ying J., Zhang Y., Xu L., Zhang W., Ni M., et al. . (2020). Genome-wide identification and functional characterization of the cation proton antiporter (CPA) family related to salt stress response in radish (Raphanus sativus l.). Int. J. Mol. Sci. 21 (21), 8262. doi: 10.3390/ijms21218262 PubMed DOI PMC

Wang J., Zhang Z. (2021). GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19 (4), 629–640. doi: 10.1016/j.gpb.2021.08.005 PubMed DOI PMC

Wasson A. P., Richards R. A., Chatrath R., Misra S. C., Prasad S. V. S., Rebetzke G. J., et al. . (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63, 3485–3498. doi: 10.1093/jxb/ers111 PubMed DOI

Wehner G. G., Balko C. C., Enders M. M., Humbeck K. K., Ordon F. F. (2015). Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol. 15, 125. doi: 10.1186/s12870-015-0524-3 PubMed DOI PMC

Wong M. M., Bhaskara G. B., Wen T.-N., Lin W.-D., Nguyen T. T., Chong G. L., et al. . (2019). Phosphoproteomics of arabidopsis highly ABA-Induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proc. Natl. Acad. Sci. U.S.A. 116, 2354–2363. doi: 10.1073/pnas.1819971116 PubMed DOI PMC

Würschum T., Tucker M. R., Reif J. C., Maurer H. (2012). Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol. 12, 109. doi: 10.1186/1471-2229-12-109 PubMed DOI PMC

Xia Z., Zhang X., Li J., Su X., Liu J. (2014). Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic arabidopsis. Plant Physiol. Biochem. 83, 100–106. doi: 10.1016/j.plaphy.2014.07.023 PubMed DOI

Xie Q., Frugis G., Colgan D., Chua N. H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036. doi: 10.1101/gad.852200 PubMed DOI PMC

Xu X. M., Lin H., Maple J., Björkblom B., Alves G., Larsen J. P., et al. . (2010). The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation. J. Cell Sci. 123, 1644–1651. doi: 10.1242/jcs.063222 PubMed DOI

Yang L., Zheng B., Mao C., Qi X., Liu F., Wu P. (2004). Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit. Mol. Genet. Genomics 272, 433–442. doi: 10.1007/s00438-004-1066-9 PubMed DOI

Yin L., Zhang H., Tang Z., Xu J., Yin D., Zhang Z., et al. . (2021). rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinf. 19, 619–628. doi: 10.1016/j.gpb.2020.10.007 PubMed DOI PMC

Zadražnik T., Moen A., Egge-Jacobsen W., Meglič V., Šuštar-Vozlič J. (2017). Towards a better understanding of protein changes in common bean under drought: A case study of n-glycoproteins. Plant Physiol. biochemistry: PPB 118, 400–412. doi: 10.1016/j.plaphy.2017.07.004 PubMed DOI

Žárský V., Kulich I., Fendrych M., Pečenková T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16, 726–733. doi: 10.1016/j.pbi.2013.10.013 PubMed DOI

Zhang Q., Liu H., Wu X., Wang W. (2020). Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biol. 20, 315. doi: 10.1186/s12870-020-02526-w PubMed DOI PMC

Zhao Y., Cheng X., Liu X., Wu H., Bi H., Xu H. (2018). The wheat MYB transcription factor TaMYB(31) is involved in drought stress responses in arabidopsis. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01426 PubMed DOI PMC

Zhao Q., Nakashima J., Chen F., Yin Y., Fu C., Yun J., et al. . (2013). LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis . Plant Cell 25, 3976–3987. doi: 10.1105/tpc.113.117770 PubMed DOI PMC

Zhou Z., Li Q., Xiao L., Wang Y., Feng J., Bu Q., et al. . (2021). Multiplexed CRISPR/Cas9-mediated knockout of laccase genes in salvia miltiorrhiza revealed their roles in growth, development, and metabolism. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.647768 PubMed DOI PMC

Zhou H., Qi K., Liu X., Yin H., Wang P., Chen J., et al. . (2016). Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other rosaceae species. Mol. Genet. Genomics 291, 1727–1742. doi: 10.1007/s00438-016-1215-y PubMed DOI

Zimmermann R., Sakai H., Hochholdinger F. (2009). The Gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol. 152, 356–365. doi: 10.1104/pp.109.149054 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace