Urinary microRNAs and Their Significance in Prostate Cancer Diagnosis: A 5-Year Update
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV18-03-00360
Ministry of Health of the Czech Republic
PubMed
35804929
PubMed Central
PMC9265126
DOI
10.3390/cancers14133157
PII: cancers14133157
Knihovny.cz E-zdroje
- Klíčová slova
- diagnosis, extracellular vesicles, microRNA, prostate cancer, urine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current routine screening methods for the diagnosis of prostate cancer (PCa) have significantly increased early detection of the disease but often show unsatisfactory analytical parameters. A class of promising markers represents urinary microRNAs (miRNAs). In the last five years, there has been an extensive increase in the number of studies on this topic. Thus, this review aims to update knowledge and point out technical aspects affecting urinary miRNA analysis. The review of relevant literature was carried out by searching the PubMed database for the keywords: microRNA, miRNA, urine, urinary, prostate cancer, and diagnosis. Papers discussed in this review were retrieved using PubMed, and the search strategy was as follows: (urine OR urinary) WITH (microRNA OR miRNA) AND prostate cancer. The search was limited to the last 5 years, January 2017 to December 2021. Based on the defined search strategy, 31 original publications corresponding to the research topic were identified, read and reviewed to present the latest findings and to assess possible translation of urinary miRNAs into clinical practice. Reviews or older publications were read and cited if they valuably extended the context and contributed to a better understanding. Urinary miRNAs are potentially valuable markers for the diagnosis of prostate cancer. Despite promising results, there is still a need for independent validation of exploratory data, which follows a strict widely accepted methodology taking into account the shortcomings and factors influencing the analysis.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
James N.D., de Bono J.S., Spears M.R., Clarke N.W., Mason M.D., Dearnaley D.P., Ritchie A.W.S., Amos C.L., Gilson C., Jones R.J., et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N. Engl. J. Med. 2017;377:338–351. doi: 10.1056/NEJMoa1702900. PubMed DOI PMC
Kyriakopoulos C.E., Chen Y.H., Carducci M.A., Liu G., Jarrard D.F., Hahn N.M., Shevrin D.H., Dreicer R., Hussain M., Eisenberger M., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018;36:1080–1087. doi: 10.1200/JCO.2017.75.3657. PubMed DOI PMC
Parker C., Castro E., Fizazi K., Heidenreich A., Ost P., Procopio G., Tombal B., Gillessen S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020;31:1119–1134. doi: 10.1016/j.annonc.2020.06.011. PubMed DOI
Johnson D.C., Raman S.S., Mirak S.A., Kwan L., Bajgiran A.M., Hsu W., Maehara C.K., Ahuja P., Faiena I., Pooli A., et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur. Urol. 2019;75:712–720. doi: 10.1016/j.eururo.2018.11.031. PubMed DOI
Lilja H., Ulmert D., Vickers A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat. Rev. Cancer. 2008;8:268–278. doi: 10.1038/nrc2351. PubMed DOI
Moyer V.A. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012;157:120–134. doi: 10.7326/0003-4819-157-2-201207170-00459. PubMed DOI
Di Meo A., Bartlett J., Cheng Y., Pasic M.D., Yousef G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer. 2017;16:80. doi: 10.1186/s12943-017-0644-5. PubMed DOI PMC
Liu B., Shyr Y., Cai J., Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief. Funct. Genom. 2018;18:255–266. doi: 10.1093/bfgp/elz002. PubMed DOI PMC
Gambari R., Brognara E., Spandidos D.A., Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review) Int. J. Oncol. 2016;49:5–32. doi: 10.3892/ijo.2016.3503. PubMed DOI PMC
Yeh Y., Guo Q., Connelly Z., Cheng S., Yang S., Prieto-Dominguez N., Yu X. Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. Adv. Exp. Med. Biol. 2019;1210:351–378. doi: 10.1007/978-3-030-32656-2_16. PubMed DOI
Lonergan P.E., Tindall D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011;10:20. doi: 10.4103/1477-3163.83937. PubMed DOI PMC
Suh J., Payvandi F., Edelstein L.C., Amenta P.S., Zong W.X., Gélinas C., Rabson A.B. Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate. 2002;52:183–200. doi: 10.1002/pros.10082. PubMed DOI
Kroon P., Berry P.A., Stower M.J., Rodrigues G., Mann V.M., Simms M., Bhasin D., Chettiar S., Li C., Li P.K., et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013;73:5288–5298. doi: 10.1158/0008-5472.CAN-13-0874. PubMed DOI
Alwanian W.M., Tyner A.L. Protein tyrosine kinase 6 signaling in prostate cancer. Am. J. Clin. Exp. Urol. 2020;8:1–8. PubMed PMC
Fernandes R.C., Hickey T.E., Tilley W.D., Selth L.A. Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer. Endocr. Relat. Cancer. 2019;26:R237–R257. doi: 10.1530/ERC-18-0571. PubMed DOI
Yang Y., Guo J.X., Shao Z.Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac. J. Trop. Med. 2017;10:87–91. doi: 10.1016/j.apjtm.2016.09.011. PubMed DOI
Reis S.T., Pontes-Junior J., Antunes A.A., Dall’Oglio M.F., Dip N., Passerotti C.C., Rossini G.A., Morais D.R., Nesrallah A.J., Piantino C., et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12:14. doi: 10.1186/1471-2490-12-14. PubMed DOI PMC
Ren D., Yang Q., Dai Y., Guo W., Du H., Song L., Peng X. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol. Cancer. 2017;16:117. doi: 10.1186/s12943-017-0688-6. PubMed DOI PMC
Liu J., Li M., Wang Y., Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J. Drug Target. 2017;25:645–652. doi: 10.1080/1061186X.2017.1315686. PubMed DOI
Ren D., Wang M., Guo W., Huang S., Wang Z., Zhao X., Du H., Song L., Peng X. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res. 2014;358:763–778. doi: 10.1007/s00441-014-2001-y. PubMed DOI
Kong D., Li Y., Wang Z., Banerjee S., Ahmad A., Kim H.R., Sarkar F.H. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27:1712–1721. doi: 10.1002/stem.101. PubMed DOI PMC
Yu J., Lu Y., Cui D., Li E., Zhu Y., Zhao Y., Zhao F., Xia S. miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncol. Rep. 2014;31:910–918. doi: 10.3892/or.2013.2897. PubMed DOI
Fendler A., Stephan C., Yousef G.M., Kristiansen G., Jung K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat. Rev. Urol. 2016;13:734–752. doi: 10.1038/nrurol.2016.193. PubMed DOI
Cheng L., Sun X., Scicluna B.J., Coleman B.M., Hill A.F. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86:433–444. doi: 10.1038/ki.2013.502. PubMed DOI
Mlcochova H., Hezova R., Stanik M., Slaby O. Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol. Oncol. 2014;32:41.e1–41.e9. doi: 10.1016/j.urolonc.2013.04.011. PubMed DOI
Bryant R.J., Pawlowski T., Catto J.W., Marsden G., Vessella R.L., Rhees B., Kuslich C., Visakorpi T., Hamdy F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer. 2012;106:768–774. doi: 10.1038/bjc.2011.595. PubMed DOI PMC
Haj-Ahmad T.A., Abdalla M.A., Haj-Ahmad Y. Potential Urinary miRNA Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J. Cancer. 2014;5:182–191. doi: 10.7150/jca.6799. PubMed DOI PMC
Srivastava A., Goldberger H., Dimtchev A., Ramalinga M., Chijioke J., Marian C., Oermann E.K., Uhm S., Kim J.S., Chen L.N., et al. MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214. PLoS ONE. 2013;8:e76994. doi: 10.1371/journal.pone.0076994. PubMed DOI PMC
Paiva R.M., Zauli D.A.G., Neto B.S., Brum I.S. Urinary microRNAs expression in prostate cancer diagnosis: A systematic review. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2020;22:2061–2073. doi: 10.1007/s12094-020-02349-z. PubMed DOI
Juracek J., Slaby O. Urinary MicroRNAs as Emerging Class of Noninvasive Biomarkers. Methods Mol. Biol. 2020;2115:221–247. doi: 10.1007/978-1-0716-0290-4_13. PubMed DOI
Byun Y.J., Piao X.M., Jeong P., Kang H.W., Seo S.P., Moon S.K., Lee J.Y., Choi Y.H., Lee H.Y., Kim W.T., et al. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig. Clin. Urol. 2021;62:340–348. doi: 10.4111/icu.20200488. PubMed DOI PMC
Fredsøe J., Rasmussen A.K.I., Thomsen A.R., Mouritzen P., Høyer S., Borre M., Ørntoft T.F., Sørensen K.D. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. Eur. Urol. Focus. 2018;4:825–833. doi: 10.1016/j.euf.2017.02.018. PubMed DOI
Fredsøe J., Rasmussen A.K.I., Laursen E.B., Cai Y., Howard K.A., Pedersen B.G., Borre M., Mouritzen P., Ørntoft T., Sørensen K.D. Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clin. Chem. 2019;65:540–548. doi: 10.1373/clinchem.2018.296681. PubMed DOI
Lekchnov E.A., Amelina E.V., Bryzgunova O.E., Zaporozhchenko I.A., Konoshenko M.Y., Yarmoschuk S.V., Murashov I.S., Pashkovskaya O.A., Gorizkii A.M., Zheravin A.A., et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. Int. J. Mol. Sci. 2018;19:4088. doi: 10.3390/ijms19124088. PubMed DOI PMC
Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E., Zaporozhchenko I.A., Yarmoschuk S.V., Pashkovskaya O.A., Pak S.V., Laktionov P.P. The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics. 2020;10:38. doi: 10.3390/diagnostics10010038. PubMed DOI PMC
Hasanoğlu S., Göncü B.S., Yücesan E., Atasoy S., Kayali Y., Özten KandaŞ N. Investigating differential miRNA expression profiling using serum and urine specimens for detecting potential biomarker for early prostate cancer diagnosis. Turk. J. Med. Sci. 2021;51:1764–1774. doi: 10.3906/sag-2010-183. PubMed DOI PMC
Guelfi G., Cochetti G., Stefanetti V., Zampini D., Diverio S., Boni A., Mearini E. Next Generation Sequencing of urine exfoliated cells: An approach of prostate cancer microRNAs research. Sci. Rep. 2018;8:7111. doi: 10.1038/s41598-018-24236-y. PubMed DOI PMC
Ghorbanmehr N., Gharbi S., Korsching E., Tavallaei M., Einollahi B., Mowla S.J. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019;79:88–95. doi: 10.1002/pros.23714. PubMed DOI
Nayak B., Khan N., Garg H., Rustagi Y., Singh P., Seth A., Dinda A.K., Kaushal S. Role of miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer. Int. Braz J. Urol Off. J. Braz. Soc. Urol. 2020;46:614–623. doi: 10.1590/s1677-5538.ibju.2019.0409. PubMed DOI PMC
Borkowetz A., Lohse-Fischer A., Scholze J., Lotzkat U., Thomas C., Wirth M.P., Fuessel S., Erdmann K. Evaluation of MicroRNAs as Non-Invasive Diagnostic Markers in Urinary Cells from Patients with Suspected Prostate Cancer. Diagnostics. 2020;10:578. doi: 10.3390/diagnostics10080578. PubMed DOI PMC
Foj L., Ferrer F., Serra M., Arévalo A., Gavagnach M., Giménez N., Filella X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77:573–583. doi: 10.1002/pros.23295. PubMed DOI
Gracia T., Wang X., Su Y., Norgett E.E., Williams T.L., Moreno P., Micklem G., Karet Frankl F.E. Urinary Exosomes Contain MicroRNAs Capable of Paracrine Modulation of Tubular Transporters in Kidney. Sci. Rep. 2017;7:40601. doi: 10.1038/srep40601. PubMed DOI PMC
Möller A., Lobb R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer. 2020;20:697–709. doi: 10.1038/s41568-020-00299-w. PubMed DOI
Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC
Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC
Mashouri L., Yousefi H., Aref A.R., Ahadi A.M., Molaei F., Alahari S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer. 2019;18:75. doi: 10.1186/s12943-019-0991-5. PubMed DOI PMC
Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015;9:358–367. doi: 10.1002/prca.201400114. PubMed DOI PMC
Xu Y., Qin S., An T., Tang Y., Huang Y., Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77:1167–1175. doi: 10.1002/pros.23376. PubMed DOI
Ku A., Fredsøe J., Sørensen K.D., Borre M., Evander M., Laurell T., Lilja H., Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Front. Oncol. 2021;11:631021. doi: 10.3389/fonc.2021.631021. PubMed DOI PMC
Danarto R., Astuti I., Umbas R., Haryana S.M. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turk. J. Urol. 2020;46:26–30. doi: 10.5152/tud.2019.19163. PubMed DOI PMC
Bonnu C.H., Ramadhani A.N., Saputro R.B., Sesotyosari S.L., Danarto R., Astuti I., Haryana S.M. The Potential of hsa-mir-106b-5p as Liquid Biomarker in Prostate Cancer Patients in Indonesia. Asian Pac. J. Cancer Prev. APJCP. 2021;22:837–842. doi: 10.31557/APJCP.2021.22.3.837. PubMed DOI PMC
Wani S., Kaul D., Mavuduru R.S., Kakkar N., Bhatia A. Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity. J. Biotechnol. 2017;259:135–139. doi: 10.1016/j.jbiotec.2017.07.029. PubMed DOI
Matsuzaki K., Fujita K., Tomiyama E., Hatano K., Hayashi Y., Wang C., Ishizuya Y., Yamamoto Y., Hayashi T., Kato T., et al. MiR-30b-3p and miR-126-3p of urinary extracellular vesicles could be new biomarkers for prostate cancer. Transl. Androl. Urol. 2021;10:1918–1927. doi: 10.21037/tau-20-421. PubMed DOI PMC
Li Z., Li L.X., Diao Y.J., Wang J., Ye Y., Hao X.K. Identification of Urinary Exosomal miRNAs for the Non-Invasive Diagnosis of Prostate Cancer. Cancer Manag. Res. 2021;13:25–35. doi: 10.2147/CMAR.S272140. PubMed DOI PMC
Wang W.W., Sorokin I., Aleksic I., Fisher H., Kaufman R.P., Jr., Winer A., McNeill B., Gupta R., Tilki D., Fleshner N., et al. Expression of Small Noncoding RNAs in Urinary Exosomes Classifies Prostate Cancer into Indolent and Aggressive Disease. J. Urol. 2020;204:466–475. doi: 10.1097/JU.0000000000001020. PubMed DOI
Lee J., Kwon M.H., Kim J.A., Rhee W.J. Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif. Cells Nanomed. Biotechnol. 2018;46:S52–S63. doi: 10.1080/21691401.2018.1489263. PubMed DOI
Davey M., Benzina S., Savoie M., Breault G., Ghosh A., Ouellette R.J. Affinity Captured Urinary Extracellular Vesicles Provide mRNA and miRNA Biomarkers for Improved Accuracy of Prostate Cancer Detection: A Pilot Study. Int. J. Mol. Sci. 2020;21:8330. doi: 10.3390/ijms21218330. PubMed DOI PMC
Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A., Amelina E.V., Yarmoschuk S.V., Pak S.V., Laktionov P.P. The Influence of Radical Prostatectomy on the Expression of Cell-Free MiRNA. Diagnostics. 2020;10:600. doi: 10.3390/diagnostics10080600. PubMed DOI PMC
Scott G.K., Mattie M.D., Berger C.E., Benz S.C., Benz C.C. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–1281. doi: 10.1158/0008-5472.CAN-05-3632. PubMed DOI
Höglund K., Bogstedt A., Fabre S., Aziz A., Annas P., Basun H., Minthon L., Lannfelt L., Blennow K., Andreasen N. Longitudinal stability evaluation of biomarkers and their correlation in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. J. Alzheimer’s Dis. JAD. 2012;32:939–947. doi: 10.3233/JAD-2012-120976. PubMed DOI
Yoon H., Belmonte K.C., Kasten T., Bateman R., Kim J. Intra- and Inter-individual Variability of microRNA Levels in Human Cerebrospinal Fluid: Critical Implications for Biomarker Discovery. Sci. Rep. 2017;7:12720. doi: 10.1038/s41598-017-13031-w. PubMed DOI PMC
Jeon J., Olkhov-Mitsel E., Xie H., Yao C.Q., Zhao F., Jahangiri S., Cuizon C., Scarcello S., Jeyapala R., Watson J.D., et al. Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome. J. Natl. Cancer Inst. 2020;112:247–255. doi: 10.1093/jnci/djz112. PubMed DOI PMC
Gofrit O.N., Katz R., Shapiro A., Yutkin V., Pizov G., Zorn K.C., Duvdevani M., Landau E.H., Pode D. Gross hematuria in patients with prostate cancer: Etiology and management. ISRN Surg. 2013;2013:685327. doi: 10.1155/2013/685327. PubMed DOI PMC
Kirschner M.B., Edelman J.J., Kao S.C., Vallely M.P., van Zandwijk N., Reid G. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front. Genet. 2013;4:94. doi: 10.3389/fgene.2013.00094. PubMed DOI PMC
Blondal T., Jensby Nielsen S., Baker A., Andreasen D., Mouritzen P., Wrang Teilum M., Dahlsveen I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59:S1–S6. doi: 10.1016/j.ymeth.2012.09.015. PubMed DOI
Huang Z., Chen W., Du Y., Guo Q., Mao Y., Zhou X., Hua D. Serum miR-16 as a potential biomarker for human cancer diagnosis: Results from a large-scale population. J. Cancer Res. Clin. Oncol. 2019;145:787–796. doi: 10.1007/s00432-019-02849-8. PubMed DOI PMC
Lange T., Stracke S., Rettig R., Lendeckel U., Kuhn J., Schlüter R., Rippe V., Endlich K., Endlich N. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS ONE. 2017;12:e0183435. doi: 10.1371/journal.pone.0183435. PubMed DOI PMC
Bazzell B.G., Rainey W.E., Auchus R.J., Zocco D., Bruttini M., Hummel S.L., Byrd J.B. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. Circulation. Genom. Precis. Med. 2018;11:e002213. doi: 10.1161/CIRCGEN.118.002213. PubMed DOI PMC
Erdbrügger U., Blijdorp C.J., Bijnsdorp I.V., Borràs F.E., Burger D., Bussolati B., Byrd J.B., Clayton A., Dear J.W., Falcón-Pérez J.M., et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2021;10:e12093. doi: 10.1002/jev2.12093. PubMed DOI PMC
Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2018;25:770–779. doi: 10.1111/iju.13734. PubMed DOI
Freitas D., Balmaña M., Poças J., Campos D., Osório H., Konstantinidi A., Vakhrushev S.Y., Magalhães A., Reis C.A. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J. Extracell. Vesicles. 2019;8:1621131. doi: 10.1080/20013078.2019.1621131. PubMed DOI PMC
Musante L., Saraswat M., Ravidà A., Byrne B., Holthofer H. Recovery of urinary nanovesicles from ultracentrifugation supernatants. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc. 2013;28:1425–1433. doi: 10.1093/ndt/gfs564. PubMed DOI
Wachalska M., Koppers-Lalic D., van Eijndhoven M., Pegtel M., Geldof A.A., Lipinska A.D., van Moorselaar R.J., Bijnsdorp I.V. Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies. J. Circ. Biomark. 2016;5:4. doi: 10.5772/62579. PubMed DOI PMC
Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A., Amelina E.V., Konoshenko M.Y., Yarmoschuk S.V., Pashkovskaya O.A., Zheravin A.A., Pak S.V., Rykova E.Y., et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS ONE. 2019;14:e0215003. doi: 10.1371/journal.pone.0215003. PubMed DOI PMC
Markert L., Holdmann J., Klinger C., Kaufmann M., Schork K., Turewicz M., Eisenacher M., Savelsbergh A. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: An alternative for transrectal punch biopsy of the prostate? PLoS ONE. 2021;16:e0247930. doi: 10.1371/journal.pone.0247930. PubMed DOI PMC
Saha S., Allelein S., Pandey R., Medina-Perez P., Osman E., Kuhlmeier D., Soleymani L. Two-Step Competitive Hybridization Assay: A Method for Analyzing Cancer-Related microRNA Embedded in Extracellular Vesicles. Anal. Chem. 2021;93:15913–15921. doi: 10.1021/acs.analchem.1c03165. PubMed DOI
Kim J., Shim J.S., Han B.H., Kim H.J., Park J., Cho I.J., Kang S.G., Kang J.Y., Bong K.W., Choi N. Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens. Bioelectron. 2021;192:113504. doi: 10.1016/j.bios.2021.113504. PubMed DOI
Kim S., Park S., Cho Y.S., Kim Y., Tae J.H., No T.I., Shim J.S., Jeong Y., Kang S.H., Lee K.H. Electrical Cartridge Sensor Enables Reliable and Direct Identification of MicroRNAs in Urine of Patients. ACS Sens. 2021;6:833–841. doi: 10.1021/acssensors.0c01870. PubMed DOI
Yasui T., Yanagida T., Ito S., Konakade Y., Takeshita D., Naganawa T., Nagashima K., Shimada T., Kaji N., Nakamura Y., et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci. Adv. 2017;3:e1701133. doi: 10.1126/sciadv.1701133. PubMed DOI PMC
Li J., Koo K.M., Wang Y., Trau M. Native MicroRNA Targets Trigger Self-Assembly of Nanozyme-Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonic-Activated Cancer Detection. Small. 2019;15:e1904689. doi: 10.1002/smll.201904689. PubMed DOI