Urinary microRNAs and Their Significance in Prostate Cancer Diagnosis: A 5-Year Update

. 2022 Jun 28 ; 14 (13) : . [epub] 20220628

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35804929

Grantová podpora
NV18-03-00360 Ministry of Health of the Czech Republic

Current routine screening methods for the diagnosis of prostate cancer (PCa) have significantly increased early detection of the disease but often show unsatisfactory analytical parameters. A class of promising markers represents urinary microRNAs (miRNAs). In the last five years, there has been an extensive increase in the number of studies on this topic. Thus, this review aims to update knowledge and point out technical aspects affecting urinary miRNA analysis. The review of relevant literature was carried out by searching the PubMed database for the keywords: microRNA, miRNA, urine, urinary, prostate cancer, and diagnosis. Papers discussed in this review were retrieved using PubMed, and the search strategy was as follows: (urine OR urinary) WITH (microRNA OR miRNA) AND prostate cancer. The search was limited to the last 5 years, January 2017 to December 2021. Based on the defined search strategy, 31 original publications corresponding to the research topic were identified, read and reviewed to present the latest findings and to assess possible translation of urinary miRNAs into clinical practice. Reviews or older publications were read and cited if they valuably extended the context and contributed to a better understanding. Urinary miRNAs are potentially valuable markers for the diagnosis of prostate cancer. Despite promising results, there is still a need for independent validation of exploratory data, which follows a strict widely accepted methodology taking into account the shortcomings and factors influencing the analysis.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

James N.D., de Bono J.S., Spears M.R., Clarke N.W., Mason M.D., Dearnaley D.P., Ritchie A.W.S., Amos C.L., Gilson C., Jones R.J., et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N. Engl. J. Med. 2017;377:338–351. doi: 10.1056/NEJMoa1702900. PubMed DOI PMC

Kyriakopoulos C.E., Chen Y.H., Carducci M.A., Liu G., Jarrard D.F., Hahn N.M., Shevrin D.H., Dreicer R., Hussain M., Eisenberger M., et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018;36:1080–1087. doi: 10.1200/JCO.2017.75.3657. PubMed DOI PMC

Parker C., Castro E., Fizazi K., Heidenreich A., Ost P., Procopio G., Tombal B., Gillessen S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020;31:1119–1134. doi: 10.1016/j.annonc.2020.06.011. PubMed DOI

Johnson D.C., Raman S.S., Mirak S.A., Kwan L., Bajgiran A.M., Hsu W., Maehara C.K., Ahuja P., Faiena I., Pooli A., et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur. Urol. 2019;75:712–720. doi: 10.1016/j.eururo.2018.11.031. PubMed DOI

Lilja H., Ulmert D., Vickers A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat. Rev. Cancer. 2008;8:268–278. doi: 10.1038/nrc2351. PubMed DOI

Moyer V.A. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012;157:120–134. doi: 10.7326/0003-4819-157-2-201207170-00459. PubMed DOI

Di Meo A., Bartlett J., Cheng Y., Pasic M.D., Yousef G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer. 2017;16:80. doi: 10.1186/s12943-017-0644-5. PubMed DOI PMC

Liu B., Shyr Y., Cai J., Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief. Funct. Genom. 2018;18:255–266. doi: 10.1093/bfgp/elz002. PubMed DOI PMC

Gambari R., Brognara E., Spandidos D.A., Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review) Int. J. Oncol. 2016;49:5–32. doi: 10.3892/ijo.2016.3503. PubMed DOI PMC

Yeh Y., Guo Q., Connelly Z., Cheng S., Yang S., Prieto-Dominguez N., Yu X. Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. Adv. Exp. Med. Biol. 2019;1210:351–378. doi: 10.1007/978-3-030-32656-2_16. PubMed DOI

Lonergan P.E., Tindall D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011;10:20. doi: 10.4103/1477-3163.83937. PubMed DOI PMC

Suh J., Payvandi F., Edelstein L.C., Amenta P.S., Zong W.X., Gélinas C., Rabson A.B. Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate. 2002;52:183–200. doi: 10.1002/pros.10082. PubMed DOI

Kroon P., Berry P.A., Stower M.J., Rodrigues G., Mann V.M., Simms M., Bhasin D., Chettiar S., Li C., Li P.K., et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013;73:5288–5298. doi: 10.1158/0008-5472.CAN-13-0874. PubMed DOI

Alwanian W.M., Tyner A.L. Protein tyrosine kinase 6 signaling in prostate cancer. Am. J. Clin. Exp. Urol. 2020;8:1–8. PubMed PMC

Fernandes R.C., Hickey T.E., Tilley W.D., Selth L.A. Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer. Endocr. Relat. Cancer. 2019;26:R237–R257. doi: 10.1530/ERC-18-0571. PubMed DOI

Yang Y., Guo J.X., Shao Z.Q. miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac. J. Trop. Med. 2017;10:87–91. doi: 10.1016/j.apjtm.2016.09.011. PubMed DOI

Reis S.T., Pontes-Junior J., Antunes A.A., Dall’Oglio M.F., Dip N., Passerotti C.C., Rossini G.A., Morais D.R., Nesrallah A.J., Piantino C., et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol. 2012;12:14. doi: 10.1186/1471-2490-12-14. PubMed DOI PMC

Ren D., Yang Q., Dai Y., Guo W., Du H., Song L., Peng X. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol. Cancer. 2017;16:117. doi: 10.1186/s12943-017-0688-6. PubMed DOI PMC

Liu J., Li M., Wang Y., Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J. Drug Target. 2017;25:645–652. doi: 10.1080/1061186X.2017.1315686. PubMed DOI

Ren D., Wang M., Guo W., Huang S., Wang Z., Zhao X., Du H., Song L., Peng X. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells. Cell Tissue Res. 2014;358:763–778. doi: 10.1007/s00441-014-2001-y. PubMed DOI

Kong D., Li Y., Wang Z., Banerjee S., Ahmad A., Kim H.R., Sarkar F.H. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27:1712–1721. doi: 10.1002/stem.101. PubMed DOI PMC

Yu J., Lu Y., Cui D., Li E., Zhu Y., Zhao Y., Zhao F., Xia S. miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncol. Rep. 2014;31:910–918. doi: 10.3892/or.2013.2897. PubMed DOI

Fendler A., Stephan C., Yousef G.M., Kristiansen G., Jung K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat. Rev. Urol. 2016;13:734–752. doi: 10.1038/nrurol.2016.193. PubMed DOI

Cheng L., Sun X., Scicluna B.J., Coleman B.M., Hill A.F. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86:433–444. doi: 10.1038/ki.2013.502. PubMed DOI

Mlcochova H., Hezova R., Stanik M., Slaby O. Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol. Oncol. 2014;32:41.e1–41.e9. doi: 10.1016/j.urolonc.2013.04.011. PubMed DOI

Bryant R.J., Pawlowski T., Catto J.W., Marsden G., Vessella R.L., Rhees B., Kuslich C., Visakorpi T., Hamdy F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer. 2012;106:768–774. doi: 10.1038/bjc.2011.595. PubMed DOI PMC

Haj-Ahmad T.A., Abdalla M.A., Haj-Ahmad Y. Potential Urinary miRNA Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J. Cancer. 2014;5:182–191. doi: 10.7150/jca.6799. PubMed DOI PMC

Srivastava A., Goldberger H., Dimtchev A., Ramalinga M., Chijioke J., Marian C., Oermann E.K., Uhm S., Kim J.S., Chen L.N., et al. MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214. PLoS ONE. 2013;8:e76994. doi: 10.1371/journal.pone.0076994. PubMed DOI PMC

Paiva R.M., Zauli D.A.G., Neto B.S., Brum I.S. Urinary microRNAs expression in prostate cancer diagnosis: A systematic review. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2020;22:2061–2073. doi: 10.1007/s12094-020-02349-z. PubMed DOI

Juracek J., Slaby O. Urinary MicroRNAs as Emerging Class of Noninvasive Biomarkers. Methods Mol. Biol. 2020;2115:221–247. doi: 10.1007/978-1-0716-0290-4_13. PubMed DOI

Byun Y.J., Piao X.M., Jeong P., Kang H.W., Seo S.P., Moon S.K., Lee J.Y., Choi Y.H., Lee H.Y., Kim W.T., et al. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig. Clin. Urol. 2021;62:340–348. doi: 10.4111/icu.20200488. PubMed DOI PMC

Fredsøe J., Rasmussen A.K.I., Thomsen A.R., Mouritzen P., Høyer S., Borre M., Ørntoft T.F., Sørensen K.D. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine. Eur. Urol. Focus. 2018;4:825–833. doi: 10.1016/j.euf.2017.02.018. PubMed DOI

Fredsøe J., Rasmussen A.K.I., Laursen E.B., Cai Y., Howard K.A., Pedersen B.G., Borre M., Mouritzen P., Ørntoft T., Sørensen K.D. Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clin. Chem. 2019;65:540–548. doi: 10.1373/clinchem.2018.296681. PubMed DOI

Lekchnov E.A., Amelina E.V., Bryzgunova O.E., Zaporozhchenko I.A., Konoshenko M.Y., Yarmoschuk S.V., Murashov I.S., Pashkovskaya O.A., Gorizkii A.M., Zheravin A.A., et al. Searching for the Novel Specific Predictors of Prostate Cancer in Urine: The Analysis of 84 miRNA Expression. Int. J. Mol. Sci. 2018;19:4088. doi: 10.3390/ijms19124088. PubMed DOI PMC

Konoshenko M.Y., Lekchnov E.A., Bryzgunova O.E., Zaporozhchenko I.A., Yarmoschuk S.V., Pashkovskaya O.A., Pak S.V., Laktionov P.P. The Panel of 12 Cell-Free MicroRNAs as Potential Biomarkers in Prostate Neoplasms. Diagnostics. 2020;10:38. doi: 10.3390/diagnostics10010038. PubMed DOI PMC

Hasanoğlu S., Göncü B.S., Yücesan E., Atasoy S., Kayali Y., Özten KandaŞ N. Investigating differential miRNA expression profiling using serum and urine specimens for detecting potential biomarker for early prostate cancer diagnosis. Turk. J. Med. Sci. 2021;51:1764–1774. doi: 10.3906/sag-2010-183. PubMed DOI PMC

Guelfi G., Cochetti G., Stefanetti V., Zampini D., Diverio S., Boni A., Mearini E. Next Generation Sequencing of urine exfoliated cells: An approach of prostate cancer microRNAs research. Sci. Rep. 2018;8:7111. doi: 10.1038/s41598-018-24236-y. PubMed DOI PMC

Ghorbanmehr N., Gharbi S., Korsching E., Tavallaei M., Einollahi B., Mowla S.J. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate. 2019;79:88–95. doi: 10.1002/pros.23714. PubMed DOI

Nayak B., Khan N., Garg H., Rustagi Y., Singh P., Seth A., Dinda A.K., Kaushal S. Role of miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer. Int. Braz J. Urol Off. J. Braz. Soc. Urol. 2020;46:614–623. doi: 10.1590/s1677-5538.ibju.2019.0409. PubMed DOI PMC

Borkowetz A., Lohse-Fischer A., Scholze J., Lotzkat U., Thomas C., Wirth M.P., Fuessel S., Erdmann K. Evaluation of MicroRNAs as Non-Invasive Diagnostic Markers in Urinary Cells from Patients with Suspected Prostate Cancer. Diagnostics. 2020;10:578. doi: 10.3390/diagnostics10080578. PubMed DOI PMC

Foj L., Ferrer F., Serra M., Arévalo A., Gavagnach M., Giménez N., Filella X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77:573–583. doi: 10.1002/pros.23295. PubMed DOI

Gracia T., Wang X., Su Y., Norgett E.E., Williams T.L., Moreno P., Micklem G., Karet Frankl F.E. Urinary Exosomes Contain MicroRNAs Capable of Paracrine Modulation of Tubular Transporters in Kidney. Sci. Rep. 2017;7:40601. doi: 10.1038/srep40601. PubMed DOI PMC

Möller A., Lobb R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer. 2020;20:697–709. doi: 10.1038/s41568-020-00299-w. PubMed DOI

Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC

Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066. PubMed DOI PMC

Mashouri L., Yousefi H., Aref A.R., Ahadi A.M., Molaei F., Alahari S.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer. 2019;18:75. doi: 10.1186/s12943-019-0991-5. PubMed DOI PMC

Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015;9:358–367. doi: 10.1002/prca.201400114. PubMed DOI PMC

Xu Y., Qin S., An T., Tang Y., Huang Y., Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77:1167–1175. doi: 10.1002/pros.23376. PubMed DOI

Ku A., Fredsøe J., Sørensen K.D., Borre M., Evander M., Laurell T., Lilja H., Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Front. Oncol. 2021;11:631021. doi: 10.3389/fonc.2021.631021. PubMed DOI PMC

Danarto R., Astuti I., Umbas R., Haryana S.M. Urine miR-21-5p and miR-200c-3p as potential non-invasive biomarkers in patients with prostate cancer. Turk. J. Urol. 2020;46:26–30. doi: 10.5152/tud.2019.19163. PubMed DOI PMC

Bonnu C.H., Ramadhani A.N., Saputro R.B., Sesotyosari S.L., Danarto R., Astuti I., Haryana S.M. The Potential of hsa-mir-106b-5p as Liquid Biomarker in Prostate Cancer Patients in Indonesia. Asian Pac. J. Cancer Prev. APJCP. 2021;22:837–842. doi: 10.31557/APJCP.2021.22.3.837. PubMed DOI PMC

Wani S., Kaul D., Mavuduru R.S., Kakkar N., Bhatia A. Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity. J. Biotechnol. 2017;259:135–139. doi: 10.1016/j.jbiotec.2017.07.029. PubMed DOI

Matsuzaki K., Fujita K., Tomiyama E., Hatano K., Hayashi Y., Wang C., Ishizuya Y., Yamamoto Y., Hayashi T., Kato T., et al. MiR-30b-3p and miR-126-3p of urinary extracellular vesicles could be new biomarkers for prostate cancer. Transl. Androl. Urol. 2021;10:1918–1927. doi: 10.21037/tau-20-421. PubMed DOI PMC

Li Z., Li L.X., Diao Y.J., Wang J., Ye Y., Hao X.K. Identification of Urinary Exosomal miRNAs for the Non-Invasive Diagnosis of Prostate Cancer. Cancer Manag. Res. 2021;13:25–35. doi: 10.2147/CMAR.S272140. PubMed DOI PMC

Wang W.W., Sorokin I., Aleksic I., Fisher H., Kaufman R.P., Jr., Winer A., McNeill B., Gupta R., Tilki D., Fleshner N., et al. Expression of Small Noncoding RNAs in Urinary Exosomes Classifies Prostate Cancer into Indolent and Aggressive Disease. J. Urol. 2020;204:466–475. doi: 10.1097/JU.0000000000001020. PubMed DOI

Lee J., Kwon M.H., Kim J.A., Rhee W.J. Detection of exosome miRNAs using molecular beacons for diagnosing prostate cancer. Artif. Cells Nanomed. Biotechnol. 2018;46:S52–S63. doi: 10.1080/21691401.2018.1489263. PubMed DOI

Davey M., Benzina S., Savoie M., Breault G., Ghosh A., Ouellette R.J. Affinity Captured Urinary Extracellular Vesicles Provide mRNA and miRNA Biomarkers for Improved Accuracy of Prostate Cancer Detection: A Pilot Study. Int. J. Mol. Sci. 2020;21:8330. doi: 10.3390/ijms21218330. PubMed DOI PMC

Konoshenko M.Y., Bryzgunova O.E., Lekchnov E.A., Amelina E.V., Yarmoschuk S.V., Pak S.V., Laktionov P.P. The Influence of Radical Prostatectomy on the Expression of Cell-Free MiRNA. Diagnostics. 2020;10:600. doi: 10.3390/diagnostics10080600. PubMed DOI PMC

Scott G.K., Mattie M.D., Berger C.E., Benz S.C., Benz C.C. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–1281. doi: 10.1158/0008-5472.CAN-05-3632. PubMed DOI

Höglund K., Bogstedt A., Fabre S., Aziz A., Annas P., Basun H., Minthon L., Lannfelt L., Blennow K., Andreasen N. Longitudinal stability evaluation of biomarkers and their correlation in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. J. Alzheimer’s Dis. JAD. 2012;32:939–947. doi: 10.3233/JAD-2012-120976. PubMed DOI

Yoon H., Belmonte K.C., Kasten T., Bateman R., Kim J. Intra- and Inter-individual Variability of microRNA Levels in Human Cerebrospinal Fluid: Critical Implications for Biomarker Discovery. Sci. Rep. 2017;7:12720. doi: 10.1038/s41598-017-13031-w. PubMed DOI PMC

Jeon J., Olkhov-Mitsel E., Xie H., Yao C.Q., Zhao F., Jahangiri S., Cuizon C., Scarcello S., Jeyapala R., Watson J.D., et al. Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome. J. Natl. Cancer Inst. 2020;112:247–255. doi: 10.1093/jnci/djz112. PubMed DOI PMC

Gofrit O.N., Katz R., Shapiro A., Yutkin V., Pizov G., Zorn K.C., Duvdevani M., Landau E.H., Pode D. Gross hematuria in patients with prostate cancer: Etiology and management. ISRN Surg. 2013;2013:685327. doi: 10.1155/2013/685327. PubMed DOI PMC

Kirschner M.B., Edelman J.J., Kao S.C., Vallely M.P., van Zandwijk N., Reid G. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front. Genet. 2013;4:94. doi: 10.3389/fgene.2013.00094. PubMed DOI PMC

Blondal T., Jensby Nielsen S., Baker A., Andreasen D., Mouritzen P., Wrang Teilum M., Dahlsveen I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59:S1–S6. doi: 10.1016/j.ymeth.2012.09.015. PubMed DOI

Huang Z., Chen W., Du Y., Guo Q., Mao Y., Zhou X., Hua D. Serum miR-16 as a potential biomarker for human cancer diagnosis: Results from a large-scale population. J. Cancer Res. Clin. Oncol. 2019;145:787–796. doi: 10.1007/s00432-019-02849-8. PubMed DOI PMC

Lange T., Stracke S., Rettig R., Lendeckel U., Kuhn J., Schlüter R., Rippe V., Endlich K., Endlich N. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS ONE. 2017;12:e0183435. doi: 10.1371/journal.pone.0183435. PubMed DOI PMC

Bazzell B.G., Rainey W.E., Auchus R.J., Zocco D., Bruttini M., Hummel S.L., Byrd J.B. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. Circulation. Genom. Precis. Med. 2018;11:e002213. doi: 10.1161/CIRCGEN.118.002213. PubMed DOI PMC

Erdbrügger U., Blijdorp C.J., Bijnsdorp I.V., Borràs F.E., Burger D., Bussolati B., Byrd J.B., Clayton A., Dear J.W., Falcón-Pérez J.M., et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2021;10:e12093. doi: 10.1002/jev2.12093. PubMed DOI PMC

Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2018;25:770–779. doi: 10.1111/iju.13734. PubMed DOI

Freitas D., Balmaña M., Poças J., Campos D., Osório H., Konstantinidi A., Vakhrushev S.Y., Magalhães A., Reis C.A. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J. Extracell. Vesicles. 2019;8:1621131. doi: 10.1080/20013078.2019.1621131. PubMed DOI PMC

Musante L., Saraswat M., Ravidà A., Byrne B., Holthofer H. Recovery of urinary nanovesicles from ultracentrifugation supernatants. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc. 2013;28:1425–1433. doi: 10.1093/ndt/gfs564. PubMed DOI

Wachalska M., Koppers-Lalic D., van Eijndhoven M., Pegtel M., Geldof A.A., Lipinska A.D., van Moorselaar R.J., Bijnsdorp I.V. Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies. J. Circ. Biomark. 2016;5:4. doi: 10.5772/62579. PubMed DOI PMC

Bryzgunova O.E., Zaporozhchenko I.A., Lekchnov E.A., Amelina E.V., Konoshenko M.Y., Yarmoschuk S.V., Pashkovskaya O.A., Zheravin A.A., Pak S.V., Rykova E.Y., et al. Data analysis algorithm for the development of extracellular miRNA-based diagnostic systems for prostate cancer. PLoS ONE. 2019;14:e0215003. doi: 10.1371/journal.pone.0215003. PubMed DOI PMC

Markert L., Holdmann J., Klinger C., Kaufmann M., Schork K., Turewicz M., Eisenacher M., Savelsbergh A. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: An alternative for transrectal punch biopsy of the prostate? PLoS ONE. 2021;16:e0247930. doi: 10.1371/journal.pone.0247930. PubMed DOI PMC

Saha S., Allelein S., Pandey R., Medina-Perez P., Osman E., Kuhlmeier D., Soleymani L. Two-Step Competitive Hybridization Assay: A Method for Analyzing Cancer-Related microRNA Embedded in Extracellular Vesicles. Anal. Chem. 2021;93:15913–15921. doi: 10.1021/acs.analchem.1c03165. PubMed DOI

Kim J., Shim J.S., Han B.H., Kim H.J., Park J., Cho I.J., Kang S.G., Kang J.Y., Bong K.W., Choi N. Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens. Bioelectron. 2021;192:113504. doi: 10.1016/j.bios.2021.113504. PubMed DOI

Kim S., Park S., Cho Y.S., Kim Y., Tae J.H., No T.I., Shim J.S., Jeong Y., Kang S.H., Lee K.H. Electrical Cartridge Sensor Enables Reliable and Direct Identification of MicroRNAs in Urine of Patients. ACS Sens. 2021;6:833–841. doi: 10.1021/acssensors.0c01870. PubMed DOI

Yasui T., Yanagida T., Ito S., Konakade Y., Takeshita D., Naganawa T., Nagashima K., Shimada T., Kaji N., Nakamura Y., et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci. Adv. 2017;3:e1701133. doi: 10.1126/sciadv.1701133. PubMed DOI PMC

Li J., Koo K.M., Wang Y., Trau M. Native MicroRNA Targets Trigger Self-Assembly of Nanozyme-Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonic-Activated Cancer Detection. Small. 2019;15:e1904689. doi: 10.1002/smll.201904689. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...