Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET

. 2012 Sep ; 40 (16) : e121. [epub] 20120428

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22544706

Fluorescence resonance energy transfer (FRET) under in vivo conditions is a well-established technique for the evaluation of populations of protein bound/unbound nucleic acid (NA) molecules or NA hybridization kinetics. However, in vivo FRET has not been applied to in vivo quantitative conformational analysis of NA thus far. Here we explored parameters critical for characterization of NA structure using single-pair (sp)FRET in the complex cellular environment of a living Escherichia coli cell. Our measurements showed that the fluorophore properties in the cellular environment differed from those acquired under in vitro conditions. The precision for the interprobe distance determination from FRET efficiency values acquired in vivo was found lower (≈ 31%) compared to that acquired in diluted buffers (13%). Our numerical simulations suggest that despite its low precision, the in-cell FRET measurements can be successfully applied to discriminate among various structural models. The main advantage of the in-cell spFRET setup presented here over other established techniques allowing conformational analysis in vivo is that it allows investigation of NA structure in various cell types and in a native cellular environment, which is not disturbed by either introduced bulk NA or by the use of chemical transfectants.

Zobrazit více v PubMed

Ito Y, Selenko P. Cellular structural biology. Curr. Opin. Struct. Biol. 2010;20:640–648. PubMed

Hansel R, Foldynova-Trantirkova S, Lohr F, Buck J, Bongartz E, Bamberg E, Schwalbe H, Dotsch V, Trantirek L. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 2009;131:15761–15768. PubMed

Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Edit. 2011;50:5070–5074. PubMed

Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M. Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem. 2011;12:1192–1195. PubMed

Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 2000;7:730–734. PubMed

Stryer L. Fluorescence energy-transfer as a spectroscopic ruler. Annu. Rev. Biochem. 1978;47:819–846. PubMed

Stryer L, Haugland RP. Energy transfer - a spectroscopic ruler. Proc. Natl Acad. Sci. USA. 1967;58:719–726. PubMed PMC

Hurley DJ, Tor Y. Donor/acceptor interactions in systematically modified Ru-II-Os-II oligonucleotides. J. Am. Chem. Soc. 2002;124:13231–13241. PubMed

Lilley DMJ, Wilson TJ. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr. Opin. Chem. Biol. 2000;4:507–517. PubMed

Woodside MT, Anthony PC, Behnke-Parks WM, Larizadeh K, Herschlag D, Block SM. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science. 2006;314:1001–1004. PubMed PMC

Wozniak AK, Schroder GF, Grubmuller H, Seidel CAM, Oesterhelt F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl Acad. Sci. USA. 2008;105:18337–18342. PubMed PMC

Ishii M, Ikushima M, Kurachi Y. In vivo interaction between RGS4 and calmodulin visualized with FRET techniques: possible involvement of lipid raft. Biochem. Biophys. Res. Commun. 2005;338:839–846. PubMed

Gaibelet G, Planchenault T, Mazeres S, Dumas F, Arenzana-Seisdedos F, Lopez A, Lagane B, Bachelerie F. CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach. J. Biol. Chem. 2006;281:37921–37929. PubMed

Chilibeck KA, Wu T, Liang C, Schellenberg MJ, Gesner EM, Lynch JM, MacMillan AM. FRET analysis of in vivo dimerization by RNA-editing enzymes. J. Biol. Chem. 2006;281:16530–16535. PubMed

Schoen I, Krammer H, Braun D. Hybridization kinetics is different inside cells. Proc. Natl Acad. Sci. USA. 2009;106:21649–21654. PubMed PMC

Uchiyama H, Hirano K, Kashiwasake-Jibu M, Taira K. Detection of undegraded oligonucleotides in vivo by fluorescence resonance energy transfer. J. Biol. Chem. 1996;271:380–384. PubMed

Treutlein B, Michaelis J. Direct observation of single RNA polymerase processing through a single endogenous gene in a living yeast cell. Angew. Chem. Int. Ed. Engl. 2011;50:9788–9790. PubMed

Enderlein J, Erdmann R. Fast fitting of multi-exponential decay curves. Opt. Commun. 1997;134:371–378.

Huang F, Lerner E, Sato S, Amir D, Haas E, Fersht AR. Time-resolved fluorescence resonance energy transfer study shows a compact denatured state of the B domain of protein A. Biochemistry. 2009;48:3468–3476. PubMed

Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst. 1983;108:1067–1071.

Dale RE, Eisinger J, Blumberg WE. Orientational freedom of molecular probes - orientation factor in intra-molecular energy-transfer. Biophys. J. 1979;26:161–193. PubMed PMC

Muschielok A, Andrecka J, Jawhari A, Bruckner F, Cramer P, Michaelis J. A nano-positioning system for macromolecular structural analysis. Nat. Methods. 2008;5:965–971. PubMed

Sindbert S, Kalinin S, Nguyen H, Kienzler A, Clima L, Bannwarth W, Appel B, Muller S, Seidel CA. Accurate distance determination of nucleic acids via Forster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 2011;133:2463–2480. PubMed

Clifford JN, Bell TDM, Tinnefeld P, Heilemann M, Melnikov SM, Hotta J, Sliwa M, Dedecker P, Sauer M, Hofkens J, et al. Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environment. J. Phys. Chem. B. 2007;111:6987–6991. PubMed

Fessl T, Ben-Yaish S, Vacha F, Adamec F, Zalevsky Z. Depth of focus extended microscope configuration for imaging of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells. Opt. Commun. 2009;282:2495–2501.

Wang JC. Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA. 1979;76:200–203. PubMed PMC

Kypr J, Chladkova J, Zimulova M, Vorlickova M. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res. 1999;27:3466–3473. PubMed PMC

Minyat EE, Ivanov VI, Kritzyn AM, Minchenkova LE, Schyolkina AK. Spermine and spermidine-induced B to A transition of DNA in solution. J. Mol. Biol. 1979;128:397–409. PubMed

Xu Q, Shoemaker RK, Braunlin WH. Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophys. J. 1993;65:1039–1049. PubMed PMC

Robinson H, Wang AH. Neomycin, spermine and hexaamminecobalt (III) share common structural motifs in converting B- to A-DNA. Nucleic Acids Res. 1996;24:676–682. PubMed PMC

Brahms J, Mommaerts WF. A study of conformation of nucleic acids in solution by means of circular dichroism. J. Mol. Biol. 1964;10:73–88. PubMed

Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD, Schyolkina AK. The B to A transition of DNA in solution. J. Mol. Biol. 1974;87:817–833. PubMed

Vorlickova M, Minyat EE, Kypr J. Cooperative changes in the chiroptical properties of DNA induced by methanol. Biopolymers. 1984;23:1–4. PubMed

Florentiev VL, Ivanov VI. RNA polymerase: two-step mechanism with overlapping steps. Nature. 1970;228:519–522. PubMed

Beabealashvily RS, Ivanov VI, Minchenkova LE, Savotchkina LP. RNA polymerase-DNA complexes. I. The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochim. Biophys. Acta. 1972;259:35–40. PubMed

Setlow P. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Microbiol. 1992;6:563–567. PubMed

Chin DJ, Green GA, Zon G, Szoka FC, Jr, Straubinger RM. Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biologist. 1990;2:1091–1100. PubMed

Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B. Intracellular distribution of microinjected antisense oligonucleotides. Proc. Natl Acad. Sci. USA. 1991;88:2702–2706. PubMed PMC

Clarenc JP, Lebleu B, Leonetti JP. Characterization of the nuclear binding sites of oligodeoxyribonucleotides and their analogs. J. Biol. Chem. 1993;268:5600–5604. PubMed

Fisher TL, Terhorst T, Cao X, Wagner RW. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 1993;21:3857–3865. PubMed PMC

Hansel R. 2009. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. PhD thesis - Johan Wolfgang Goethe University, Frankfurt am Main, Germany. PubMed

Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J. Magn. Reson. 2011;212:450–454. PubMed

Sedoris KC, Thomas SD, Clarkson CR, Muench D, Islam A, Singh R, Miller DM. Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 2012;11:66–76. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...