Structural basis of bis-quinolinium ligands binding to quadruplex-duplex hybrids from PIM1 oncogene

. 2025 Sep 05 ; 53 (17) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40966494

Grantová podpora
EU Horizon 2020
101068280 Marie Skłodowska-Curie
MUNI/JS/1849/2024 Masaryk University
MUNI/J/0004/2021) Masaryk University
P1-0242 Slovenian Research and Innovation Agency
101094131 European Union's Horizon 2020
GF24-10605K Czech Science Foundation

Our study investigates the interaction of two bis-quinolinium ligands, Phen-DC3 and 360A, with the quadruplex-duplex hybrid (QDH) derived from the promoter region of the PIM1 oncogene. While the QDH is polymorphic in vitro, with a hybrid and antiparallel conformation, we demonstrate that it predominantly adopts the antiparallel conformation within the intracellular environment of Xenopus laevis oocytes (eukaryotic model system). Notably, both ligands selectively bind to the hybrid QDH conformation in vitro and in a cellular context. High-resolution nuclear magnetic resonance (NMR) structures of the complexes between the hybrid QDH and the ligands reveal distinct binding modes at the quadruplex-duplex (Q-D) junction. Specifically, Phen-DC3 binds rigidly, while 360A dynamically reorients between two positions. Our findings provide a crucial paradigm highlighting the differences in structural equilibria involving QDH in vitro compared to its behavior in the intracellular space. They also underscore the potential to modulate these equilibria under native-like conditions through ligand interactions. The observed differences in the binding of Phen-DC3 and 360A lay the groundwork for designing next-generation bis-quinolinium compounds with enhanced selectivity for the Q-D junction. Methodologically, our study illustrates the potential of 19F-detected in-cell NMR methodology for screening interactions between DNA targets and drug-like molecules under physiological conditions.

Zobrazit více v PubMed

Robinson  J, Raguseo  F, Nuccio  SP  et al.  DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res. 2021; 49:8419–31. 10.1093/nar/gkab609. PubMed DOI PMC

Huppert  JL, Balasubramanian  S  G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–13. 10.1093/nar/gkl1057. PubMed DOI PMC

Vannutelli  A, Perreault  J-P, Ouangraoua  A  G-quadruplex occurrence and conservation: more than just a question of guanine–cytosine content. NAR Genom Bioinform. 2022; 4:lqac010. 10.1093/nargab/lqac010. PubMed DOI PMC

Rhodes  D, Lipps  HJ  G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–37. 10.1093/nar/gkv862. PubMed DOI PMC

Bochman  ML, Paeschke  K, Zakian  VA  DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13:770–80. 10.1038/nrg3296. PubMed DOI PMC

Balasubramanian  S, Hurley  LH, Neidle  S  Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov. 2011; 10:261–75. 10.1038/nrd3428. PubMed DOI PMC

Wang  E, Thombre  R, Shah  Y  et al.  G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res. 2021; 49:4816–30. 10.1093/nar/gkab164. PubMed DOI PMC

Tateishi-Karimata  H, Sugimoto  N  Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res. 2021; 49:7839–55. 10.1093/nar/gkab580. PubMed DOI PMC

Webba  da Silva M  Geometric formalism for DNA quadruplex folding. Chem Eur J. 2007; 13:9738–45. 10.1002/chem.200701255. PubMed DOI

Winnerdy  FR, Phan  AT. Neidle  S  Quadruplex structure and diversity. Annual Reports in Medicinal Chemistry. 2020; 54:Amsterdam, Netherlands: Elsevier; 45–73.

Monchaud  D, Teulade-Fichou  M-P  A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem. 2008; 6:627–36. 10.1039/B714772B. PubMed DOI

Yang  Q-F, Wang  X-R, Wang  Y-H  et al.  G4LDB 3.0: a database for discovering and studying G-quadruplex and i-motif ligands. Nucleic Acids Res. 2025; 53:D91–8. 10.1093/nar/gkae835. PubMed DOI PMC

Lim  KW, Jenjaroenpun  P, Low  ZJ  et al.  Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Res. 2015; 43:5630–46. 10.1093/nar/gkv355. PubMed DOI PMC

Lim  KW, Phan  AT  Structural basis of DNA quadruplex–duplex junction formation. Angew Chem Int Ed. 2013; 52:8566–9. 10.1002/anie.201302995. PubMed DOI

Lim  KW, Nguyen  TQN, Phan  AT  Joining of multiple duplex stems at a single quadruplex loop. J Am Chem Soc. 2014; 136:17969–73. 10.1021/ja5078816. PubMed DOI

Mandal  S, Kawamoto  Y, Yue  Z  et al.  Submolecular dissection reveals strong and specific binding of polyamide–pyridostatin conjugates to human telomere interface. Nucleic Acids Res. 2019; 47:3295–305. 10.1093/nar/gkz135. PubMed DOI PMC

Díaz-Casado  L, Serrano-Chacón  I, Montalvillo-Jiménez  L  et al.  De novo design of selective quadruplex–duplex junction ligands and structural characterisation of their binding mode: targeting the G4 hot-spot. Chem Eur J. 2021; 27:6204–12. 10.1002/chem.202005026. PubMed DOI

Nguyen  TQN, Lim  KW, Phan  AT  A dual-specific targeting approach based on the simultaneous recognition of duplex and quadruplex motifs. Sci Rep. 2017; 7:11969. 10.1038/s41598-017-10583-9. PubMed DOI PMC

Liu  L, Ma  T, Zeng  Y  et al.  Organic-platinum hybrids for covalent binding of G-quadruplexes: structural basis and application to cancer immunotherapy. Angew Chem Int Ed. 2023; 62:e202305645. 10.1002/anie.202305645. PubMed DOI

Ooga  M, Sahayasheela  VJ, Hirose  Y  et al.  A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures. Chem Commun. 2024; 60:8744–7. 10.1039/D4CC01572J. PubMed DOI

Vianney  YM, Weisz  K  Indoloquinoline ligands favor intercalation at quadruplex–duplex interfaces. Chem Eur J. 2022; 28:e202103718. 10.1002/chem.202103718. PubMed DOI PMC

Vianney  YM, Preckwinkel  P, Mohr  S  et al.  Quadruplex–duplex junction: a high-affinity binding site for indoloquinoline ligands. Chem Eur J. 2020; 26:16910–22. 10.1002/chem.202003540. PubMed DOI PMC

Liu  L, Wang  K, Liu  W  et al.  Spatial matching selectivity and solution structure of organic–metal hybrid to quadruplex–duplex hybrid. Angew Chem Int Ed. 2021; 60:20833–9. 10.1002/anie.202106256. PubMed DOI

De  Cian A, DeLemos  E, Mergny  J-L  et al.  Highly efficient G-quadruplex recognition by bisquinolinium compounds. J Am Chem Soc. 2007; 129:1856–7. 10.1021/ja067352b. PubMed DOI

Vianney  YM, Weisz  K  High-affinity binding at quadruplex–duplex junctions: rather the rule than the exception. Nucleic Acids Res. 2022; 50:11948–64. 10.1093/nar/gkac1088. PubMed DOI PMC

Vianney  YM, Dierks  D, Weisz  K  Structural differences at quadruplex–duplex interfaces enable ligand-induced topological transitions. Adv Sci. 2024; 11:2309891. 10.1002/advs.202309891. PubMed DOI PMC

Chung  WJ, Heddi  B, Hamon  F  et al.  Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC PubMed DOI

Marchand  A, Granzhan  A, Iida  K  et al.  Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes. J Am Chem Soc. 2015; 137:750–6. 10.1021/ja5099403. PubMed DOI

Ghosh  A, Trajkovski  M, Teulade-Fichou  M  et al.  Phen-DC PubMed DOI PMC

Pennarun  G, Granotier  C, Gauthier  LR  et al.  Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene. 2005; 24:2917–28. 10.1038/sj.onc.1208468. PubMed DOI

De  Cian A, Cristofari  G, Reichenbach  P  et al.  Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci USA. 2007; 104:17347–52. 10.1073/pnas.0707365104. PubMed DOI PMC

De  Rache A, Mergny  J-L  Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie. 2015; 115:194–202. 10.1016/j.biochi.2015.06.002. PubMed DOI

Monchaud  D, Allain  C, Bertrand  H  et al.  Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie. 2008; 90:1207–23. 10.1016/j.biochi.2008.02.019. PubMed DOI

Oblak  D, Hadži  S, Podlipnik  Č  et al.  Binding-induced diversity of a human telomeric G-quadruplex stability phase space. Pharmaceuticals. 2022; 15:1150. 10.3390/ph15091150. PubMed DOI PMC

Kotar  A, Kocman  V, Plavec  J  Intercalation of a heterocyclic ligand between quartets in a G-rich tetrahelical structure. Chem Eur J. 2020; 26:814–7. 10.1002/chem.201904923. PubMed DOI PMC

Tan  DJY, Winnerdy  FR, Lim  KW  et al.  Coexistence of two quadruplex–duplex hybrids in the PIM1 gene. Nucleic Acids Res. 2020; 48:11162–71. 10.1093/nar/gkaa752. PubMed DOI PMC

Hellsten  U, Harland  RM, Gilchrist  MJ  et al.  The genome of the Western clawed frog PubMed DOI PMC

Ge  B, Huang  YC, Sen  D  et al.  A robust electronic switch made of immobilized duplex/quadruplex DNA. Angew Chem Int Ed. 2010; 49:9965–7. 10.1002/anie.201004946. PubMed DOI

Dutta  K, Fujimoto  T, Inoue  M  et al.  Development of new functional nanostructures consisting of both DNA duplex and quadruplex. Chem Commun. 2010; 46:7772–4. 10.1039/c0cc00710b. PubMed DOI

Mergny  J-L, Sen  D  DNA quadruple helices in nanotechnology. Chem Rev. 2019; 119:6290–325. 10.1021/acs.chemrev.8b00629. PubMed DOI

El-Khoury  R, Damha  MJ  2′-fluoro-arabinonucleic acid (FANA): a versatile tool for probing biomolecular interactions. Acc Chem Res. 2021; 54:2287–97. 10.1021/acs.accounts.1c00125. PubMed DOI

Mergny  J-L, Lacroix  L  Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–37. 10.1089/154545703322860825. PubMed DOI

Piotto  M, Saudek  V, Sklenář  V  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992; 2:661–5. 10.1007/BF02192855. PubMed DOI

Hwang  TL, Shaka  AJ  Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson, Series A. 1995; 112:275–9. 10.1006/jmra.1995.1047. DOI

Stonehouse  J, Shaw  GL, Keeler  J  Improving solvent suppression in jump-return NOESY experiments. J Biomol NMR. 1994; 4:799–805. 10.1007/BF00398410. PubMed DOI

Adrian  M, Heddi  B, Phan  AT  NMR spectroscopy of G-quadruplexes. Methods. 2012; 57:11–24. 10.1016/j.ymeth.2012.05.003. PubMed DOI

Thiele  CM, Petzold  K, Schleucher  J  EASY ROESY: reliable cross-peak integration in adiabatic symmetrized ROESY. Chem Eur J. 2009; 15:585–8. 10.1002/chem.200802027. PubMed DOI

Wishart  DS, Bigam  CG, Yao  J  et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995; 6:135–40. 10.1007/BF00211777. PubMed DOI

Lee  W, Tonelli  M, Markley  JL  NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–7. 10.1093/bioinformatics/btu830. PubMed DOI PMC

Salomon-Ferrer  R, Case  DA, Walker  RC  An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013; 3:198–210. 10.1002/wcms.1121. DOI

Onufriev  AV, Case  DA  Generalized born implicit solvent models for biomolecules. Annu Rev Biophys. 2019; 48:275–96. 10.1146/annurev-biophys-052118-115325. PubMed DOI PMC

Cornell  WD, Cieplak  P, Bayly  CI  et al.  A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995; 117:5179–97. 10.1021/ja00124a002. DOI

Zgarbová  M, Šponer  J, Otyepka  M  et al.  Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J Chem Theory Comput. 2015; 11:5723–36. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbová  M, Luque  FJ, Šponer  J  et al.  Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J Chem Theory Comput. 2013; 9:2339–54. 10.1021/ct400154j. PubMed DOI PMC

Krepl  M, Zgarbová  M, Stadlbauer  P  et al.  Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J Chem Theory Comput. 2012; 8:2506–20. 10.1021/ct300275s. PubMed DOI PMC

Pérez  A, Marchán  I, Svozil  D  et al.  Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J. 2007; 92:3817–29. 10.1529/biophysj.106.097782. PubMed DOI PMC

Wang  J, Wolf  RM, Caldwell  JW  et al.  Development and testing of a general amber force field. J Comput Chem. 2004; 25:1157–74. 10.1002/jcc.20035. PubMed DOI

Honorato  RV, Koukos  PI, Jiménez-García  B  et al.  Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front Mol Biosci. 2021; 8:729513. 10.3389/fmolb.2021.729513. PubMed DOI PMC

Honorato  RV, Trellet  ME, Jiménez-García  B  et al.  The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc. 2024; 19:3219–41. 10.1038/s41596-024-01011-0. PubMed DOI

Tuckerman  M, Berne  BJ, Martyna  GJ  Reversible multiple time scale molecular dynamics. J Chem Phys. 1992; 97:1990–2001. 10.1063/1.463137. DOI

Li  S, Olson  WK, Lu  X-J  Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 2019; 47:W26–34. 10.1093/nar/gkz394. PubMed DOI PMC

Meng  EC, Goddard  TD, Pettersen  EF  et al.  UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. 10.1002/pro.4792. PubMed DOI PMC

Berendsen  HJC, Grigera  JR, Straatsma  TP  The missing term in effective pair potentials. J Phys Chem. 1987; 91:6269–71. 10.1021/j100308a038. DOI

Joung  IS, Cheatham  TE  Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008; 112:9020–41. 10.1021/jp8001614. PubMed DOI PMC

Zgarbová  M, Šponer  J, Jurečka  P  Z-DNA as a touchstone for additive empirical force fields and a refinement of the alpha/gamma DNA torsions for AMBER. J Chem Theory Comput. 2021; 17:6292–301. 10.1021/acs.jctc.1c00697. PubMed DOI

Darden  T, York  D, Pedersen  L  Particle mesh Ewald: an DOI

Essmann  U, Perera  L, Berkowitz  ML  et al.  A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577–93. 10.1063/1.470117. DOI

Salomon-Ferrer  R, Götz  AW, Poole  D  et al.  Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput. 2013; 9:3878–88. 10.1021/ct400314y. PubMed DOI

Ryckaert  J-P, Ciccotti  G, Berendsen  HJC  Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977; 23:327–41. 10.1016/0021-9991(77)90098-5. DOI

Miyamoto  S, Kollman  PA  Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992; 13:952–62. 10.1002/jcc.540130805. DOI

Hopkins  CW, Le  Grand S, Walker  RC  et al.  Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015; 11:1864–74. 10.1021/ct5010406. PubMed DOI

Stadlbauer  P, Islam  B, Otyepka  M  et al.  Insights into G-quadruplex–hemin dynamics using atomistic simulations: implications for reactivity and folding. J Chem Theory Comput. 2021; 17:1883–99. 10.1021/acs.jctc.0c01176. PubMed DOI

Le  Grand S, Götz  AW, Walker  RC  SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun. 2013; 184:374–80. 10.1016/j.cpc.2012.09.022. DOI

Case  DA, Ben-Shalom  IY, Brozell  SR  et al.  AMBER 2018. 2018; University of California, San Francisco.

Barducci  A, Bussi  G, Parrinello  M  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008; 100:020603. 10.1103/PhysRevLett.100.020603. PubMed DOI

Tribello  GA, Bonomi  M, Branduardi  D  et al.  PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13. 10.1016/j.cpc.2013.09.018. DOI

Case  DA, Aktulga  HM, Belfon  K  et al.  Amber 2021. 2021; University of California, San Francisco.

Roe  DR, Cheatham  TE  PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013; 9:3084–95. 10.1021/ct400341p. PubMed DOI

Humphrey  W, Dalke  A, Schulten  K  VMD: visual molecular dynamics. J Mol Graphics. 1996; 14:33–8. 10.1016/0263-7855(96)00018-5. PubMed DOI

Dickerhoff  J, Jang  J, Yang  D  Best method to determine DNA G-quadruplex folding: the PubMed DOI PMC

Víšková  P, Ištvánková  E, Ryneš  J  et al.  In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun. 2024; 15:1992. 10.1038/s41467-024-46221-y. PubMed DOI PMC

Krafcikova  M, Dzatko  S, Caron  C  et al.  Monitoring DNA–ligand interactions in living human cells using NMR spectroscopy. J Am Chem Soc. 2019; 141:13281–5. 10.1021/jacs.9b03031. PubMed DOI

Broft  P, Dzatko  S, Krafcikova  M  et al.  In-cell NMR spectroscopy of functional riboswitch aptamers in eukaryotic cells. Angew Chem Int Ed. 2021; 60:865–72. 10.1002/anie.202007184. PubMed DOI PMC

Bao  H-L, Ishizuka  T, Sakamoto  T  et al.  Characterization of human telomere RNA G-quadruplex structures PubMed DOI PMC

Wang  C, Xu  G, Liu  X  et al. PubMed DOI

Hänsel  R, Foldynová-Trantírková  S, Löhr  F  et al.  Evaluation of parameters critical for observing nucleic acids inside living PubMed DOI

Liu  L, Wang  K, Liu  W  et al.  Spatial matching selectivity and solution structure of organic–metal hybrid to quadruplex–duplex hybrid. Angew Chem Int Ed. 2021; 60:20833–9. 10.1002/anie.202106256. PubMed DOI

Sullivan  H-J, Readmond  C, Radicella  C  et al.  Binding of telomestatin, TMPyP4, BSU6037, and BRACO19 to a telomeric G-quadruplex–duplex hybrid probed by all-atom molecular dynamics simulations with explicit solvent. ACS Omega. 2018; 3:14788–806. 10.1021/acsomega.8b01574. PubMed DOI PMC

Roy  S, Bhattacharya  S  Chemical information and computational modeling of targeting hybrid nucleic acid structures of PubMed DOI

Liu  L-Y, Ma  T-Z, Zeng  Y-L  et al.  Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J Am Chem Soc. 2022; 144:11878–87. 10.1021/jacs.2c04775. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...