Structural basis of bis-quinolinium ligands binding to quadruplex-duplex hybrids from PIM1 oncogene
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
EU Horizon 2020
101068280
Marie Skłodowska-Curie
MUNI/JS/1849/2024
Masaryk University
MUNI/J/0004/2021)
Masaryk University
P1-0242
Slovenian Research and Innovation Agency
101094131
European Union's Horizon 2020
GF24-10605K
Czech Science Foundation
PubMed
40966494
PubMed Central
PMC12445686
DOI
10.1093/nar/gkaf894
PII: 8251892
Knihovny.cz E-zdroje
- MeSH
- chinolinové sloučeniny * chemie metabolismus MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- oocyty metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- protoonkogenní proteiny c-pim-1 * genetika chemie MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chinolinové sloučeniny * MeSH
- DNA MeSH
- ligandy MeSH
- PIM1 protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-pim-1 * MeSH
Our study investigates the interaction of two bis-quinolinium ligands, Phen-DC3 and 360A, with the quadruplex-duplex hybrid (QDH) derived from the promoter region of the PIM1 oncogene. While the QDH is polymorphic in vitro, with a hybrid and antiparallel conformation, we demonstrate that it predominantly adopts the antiparallel conformation within the intracellular environment of Xenopus laevis oocytes (eukaryotic model system). Notably, both ligands selectively bind to the hybrid QDH conformation in vitro and in a cellular context. High-resolution nuclear magnetic resonance (NMR) structures of the complexes between the hybrid QDH and the ligands reveal distinct binding modes at the quadruplex-duplex (Q-D) junction. Specifically, Phen-DC3 binds rigidly, while 360A dynamically reorients between two positions. Our findings provide a crucial paradigm highlighting the differences in structural equilibria involving QDH in vitro compared to its behavior in the intracellular space. They also underscore the potential to modulate these equilibria under native-like conditions through ligand interactions. The observed differences in the binding of Phen-DC3 and 360A lay the groundwork for designing next-generation bis-quinolinium compounds with enhanced selectivity for the Q-D junction. Methodologically, our study illustrates the potential of 19F-detected in-cell NMR methodology for screening interactions between DNA targets and drug-like molecules under physiological conditions.
Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
Institute of Biophysics Czech Academy of Sciences Brno 61200 Czech Republic
Slovenian NMR Centre National Institute of Chemistry Ljubljana 1000 Slovenia
Zobrazit více v PubMed
Robinson J, Raguseo F, Nuccio SP et al. DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res. 2021; 49:8419–31. 10.1093/nar/gkab609. PubMed DOI PMC
Huppert JL, Balasubramanian S G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–13. 10.1093/nar/gkl1057. PubMed DOI PMC
Vannutelli A, Perreault J-P, Ouangraoua A G-quadruplex occurrence and conservation: more than just a question of guanine–cytosine content. NAR Genom Bioinform. 2022; 4:lqac010. 10.1093/nargab/lqac010. PubMed DOI PMC
Rhodes D, Lipps HJ G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–37. 10.1093/nar/gkv862. PubMed DOI PMC
Bochman ML, Paeschke K, Zakian VA DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13:770–80. 10.1038/nrg3296. PubMed DOI PMC
Balasubramanian S, Hurley LH, Neidle S Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov. 2011; 10:261–75. 10.1038/nrd3428. PubMed DOI PMC
Wang E, Thombre R, Shah Y et al. G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res. 2021; 49:4816–30. 10.1093/nar/gkab164. PubMed DOI PMC
Tateishi-Karimata H, Sugimoto N Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res. 2021; 49:7839–55. 10.1093/nar/gkab580. PubMed DOI PMC
Webba da Silva M Geometric formalism for DNA quadruplex folding. Chem Eur J. 2007; 13:9738–45. 10.1002/chem.200701255. PubMed DOI
Winnerdy FR, Phan AT. Neidle S Quadruplex structure and diversity. Annual Reports in Medicinal Chemistry. 2020; 54:Amsterdam, Netherlands: Elsevier; 45–73.
Monchaud D, Teulade-Fichou M-P A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem. 2008; 6:627–36. 10.1039/B714772B. PubMed DOI
Yang Q-F, Wang X-R, Wang Y-H et al. G4LDB 3.0: a database for discovering and studying G-quadruplex and i-motif ligands. Nucleic Acids Res. 2025; 53:D91–8. 10.1093/nar/gkae835. PubMed DOI PMC
Lim KW, Jenjaroenpun P, Low ZJ et al. Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Res. 2015; 43:5630–46. 10.1093/nar/gkv355. PubMed DOI PMC
Lim KW, Phan AT Structural basis of DNA quadruplex–duplex junction formation. Angew Chem Int Ed. 2013; 52:8566–9. 10.1002/anie.201302995. PubMed DOI
Lim KW, Nguyen TQN, Phan AT Joining of multiple duplex stems at a single quadruplex loop. J Am Chem Soc. 2014; 136:17969–73. 10.1021/ja5078816. PubMed DOI
Mandal S, Kawamoto Y, Yue Z et al. Submolecular dissection reveals strong and specific binding of polyamide–pyridostatin conjugates to human telomere interface. Nucleic Acids Res. 2019; 47:3295–305. 10.1093/nar/gkz135. PubMed DOI PMC
Díaz-Casado L, Serrano-Chacón I, Montalvillo-Jiménez L et al. De novo design of selective quadruplex–duplex junction ligands and structural characterisation of their binding mode: targeting the G4 hot-spot. Chem Eur J. 2021; 27:6204–12. 10.1002/chem.202005026. PubMed DOI
Nguyen TQN, Lim KW, Phan AT A dual-specific targeting approach based on the simultaneous recognition of duplex and quadruplex motifs. Sci Rep. 2017; 7:11969. 10.1038/s41598-017-10583-9. PubMed DOI PMC
Liu L, Ma T, Zeng Y et al. Organic-platinum hybrids for covalent binding of G-quadruplexes: structural basis and application to cancer immunotherapy. Angew Chem Int Ed. 2023; 62:e202305645. 10.1002/anie.202305645. PubMed DOI
Ooga M, Sahayasheela VJ, Hirose Y et al. A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures. Chem Commun. 2024; 60:8744–7. 10.1039/D4CC01572J. PubMed DOI
Vianney YM, Weisz K Indoloquinoline ligands favor intercalation at quadruplex–duplex interfaces. Chem Eur J. 2022; 28:e202103718. 10.1002/chem.202103718. PubMed DOI PMC
Vianney YM, Preckwinkel P, Mohr S et al. Quadruplex–duplex junction: a high-affinity binding site for indoloquinoline ligands. Chem Eur J. 2020; 26:16910–22. 10.1002/chem.202003540. PubMed DOI PMC
Liu L, Wang K, Liu W et al. Spatial matching selectivity and solution structure of organic–metal hybrid to quadruplex–duplex hybrid. Angew Chem Int Ed. 2021; 60:20833–9. 10.1002/anie.202106256. PubMed DOI
De Cian A, DeLemos E, Mergny J-L et al. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J Am Chem Soc. 2007; 129:1856–7. 10.1021/ja067352b. PubMed DOI
Vianney YM, Weisz K High-affinity binding at quadruplex–duplex junctions: rather the rule than the exception. Nucleic Acids Res. 2022; 50:11948–64. 10.1093/nar/gkac1088. PubMed DOI PMC
Vianney YM, Dierks D, Weisz K Structural differences at quadruplex–duplex interfaces enable ligand-induced topological transitions. Adv Sci. 2024; 11:2309891. 10.1002/advs.202309891. PubMed DOI PMC
Chung WJ, Heddi B, Hamon F et al. Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC PubMed DOI
Marchand A, Granzhan A, Iida K et al. Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes. J Am Chem Soc. 2015; 137:750–6. 10.1021/ja5099403. PubMed DOI
Ghosh A, Trajkovski M, Teulade-Fichou M et al. Phen-DC PubMed DOI PMC
Pennarun G, Granotier C, Gauthier LR et al. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene. 2005; 24:2917–28. 10.1038/sj.onc.1208468. PubMed DOI
De Cian A, Cristofari G, Reichenbach P et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci USA. 2007; 104:17347–52. 10.1073/pnas.0707365104. PubMed DOI PMC
De Rache A, Mergny J-L Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie. 2015; 115:194–202. 10.1016/j.biochi.2015.06.002. PubMed DOI
Monchaud D, Allain C, Bertrand H et al. Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie. 2008; 90:1207–23. 10.1016/j.biochi.2008.02.019. PubMed DOI
Oblak D, Hadži S, Podlipnik Č et al. Binding-induced diversity of a human telomeric G-quadruplex stability phase space. Pharmaceuticals. 2022; 15:1150. 10.3390/ph15091150. PubMed DOI PMC
Kotar A, Kocman V, Plavec J Intercalation of a heterocyclic ligand between quartets in a G-rich tetrahelical structure. Chem Eur J. 2020; 26:814–7. 10.1002/chem.201904923. PubMed DOI PMC
Tan DJY, Winnerdy FR, Lim KW et al. Coexistence of two quadruplex–duplex hybrids in the PIM1 gene. Nucleic Acids Res. 2020; 48:11162–71. 10.1093/nar/gkaa752. PubMed DOI PMC
Hellsten U, Harland RM, Gilchrist MJ et al. The genome of the Western clawed frog PubMed DOI PMC
Ge B, Huang YC, Sen D et al. A robust electronic switch made of immobilized duplex/quadruplex DNA. Angew Chem Int Ed. 2010; 49:9965–7. 10.1002/anie.201004946. PubMed DOI
Dutta K, Fujimoto T, Inoue M et al. Development of new functional nanostructures consisting of both DNA duplex and quadruplex. Chem Commun. 2010; 46:7772–4. 10.1039/c0cc00710b. PubMed DOI
Mergny J-L, Sen D DNA quadruple helices in nanotechnology. Chem Rev. 2019; 119:6290–325. 10.1021/acs.chemrev.8b00629. PubMed DOI
El-Khoury R, Damha MJ 2′-fluoro-arabinonucleic acid (FANA): a versatile tool for probing biomolecular interactions. Acc Chem Res. 2021; 54:2287–97. 10.1021/acs.accounts.1c00125. PubMed DOI
Mergny J-L, Lacroix L Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–37. 10.1089/154545703322860825. PubMed DOI
Piotto M, Saudek V, Sklenář V Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992; 2:661–5. 10.1007/BF02192855. PubMed DOI
Hwang TL, Shaka AJ Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson, Series A. 1995; 112:275–9. 10.1006/jmra.1995.1047. DOI
Stonehouse J, Shaw GL, Keeler J Improving solvent suppression in jump-return NOESY experiments. J Biomol NMR. 1994; 4:799–805. 10.1007/BF00398410. PubMed DOI
Adrian M, Heddi B, Phan AT NMR spectroscopy of G-quadruplexes. Methods. 2012; 57:11–24. 10.1016/j.ymeth.2012.05.003. PubMed DOI
Thiele CM, Petzold K, Schleucher J EASY ROESY: reliable cross-peak integration in adiabatic symmetrized ROESY. Chem Eur J. 2009; 15:585–8. 10.1002/chem.200802027. PubMed DOI
Wishart DS, Bigam CG, Yao J et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995; 6:135–40. 10.1007/BF00211777. PubMed DOI
Lee W, Tonelli M, Markley JL NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–7. 10.1093/bioinformatics/btu830. PubMed DOI PMC
Salomon-Ferrer R, Case DA, Walker RC An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013; 3:198–210. 10.1002/wcms.1121. DOI
Onufriev AV, Case DA Generalized born implicit solvent models for biomolecules. Annu Rev Biophys. 2019; 48:275–96. 10.1146/annurev-biophys-052118-115325. PubMed DOI PMC
Cornell WD, Cieplak P, Bayly CI et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995; 117:5179–97. 10.1021/ja00124a002. DOI
Zgarbová M, Šponer J, Otyepka M et al. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J Chem Theory Comput. 2015; 11:5723–36. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M, Luque FJ, Šponer J et al. Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J Chem Theory Comput. 2013; 9:2339–54. 10.1021/ct400154j. PubMed DOI PMC
Krepl M, Zgarbová M, Stadlbauer P et al. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J Chem Theory Comput. 2012; 8:2506–20. 10.1021/ct300275s. PubMed DOI PMC
Pérez A, Marchán I, Svozil D et al. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J. 2007; 92:3817–29. 10.1529/biophysj.106.097782. PubMed DOI PMC
Wang J, Wolf RM, Caldwell JW et al. Development and testing of a general amber force field. J Comput Chem. 2004; 25:1157–74. 10.1002/jcc.20035. PubMed DOI
Honorato RV, Koukos PI, Jiménez-García B et al. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front Mol Biosci. 2021; 8:729513. 10.3389/fmolb.2021.729513. PubMed DOI PMC
Honorato RV, Trellet ME, Jiménez-García B et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc. 2024; 19:3219–41. 10.1038/s41596-024-01011-0. PubMed DOI
Tuckerman M, Berne BJ, Martyna GJ Reversible multiple time scale molecular dynamics. J Chem Phys. 1992; 97:1990–2001. 10.1063/1.463137. DOI
Li S, Olson WK, Lu X-J Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 2019; 47:W26–34. 10.1093/nar/gkz394. PubMed DOI PMC
Meng EC, Goddard TD, Pettersen EF et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. 10.1002/pro.4792. PubMed DOI PMC
Berendsen HJC, Grigera JR, Straatsma TP The missing term in effective pair potentials. J Phys Chem. 1987; 91:6269–71. 10.1021/j100308a038. DOI
Joung IS, Cheatham TE Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008; 112:9020–41. 10.1021/jp8001614. PubMed DOI PMC
Zgarbová M, Šponer J, Jurečka P Z-DNA as a touchstone for additive empirical force fields and a refinement of the alpha/gamma DNA torsions for AMBER. J Chem Theory Comput. 2021; 17:6292–301. 10.1021/acs.jctc.1c00697. PubMed DOI
Darden T, York D, Pedersen L Particle mesh Ewald: an DOI
Essmann U, Perera L, Berkowitz ML et al. A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577–93. 10.1063/1.470117. DOI
Salomon-Ferrer R, Götz AW, Poole D et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput. 2013; 9:3878–88. 10.1021/ct400314y. PubMed DOI
Ryckaert J-P, Ciccotti G, Berendsen HJC Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977; 23:327–41. 10.1016/0021-9991(77)90098-5. DOI
Miyamoto S, Kollman PA Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992; 13:952–62. 10.1002/jcc.540130805. DOI
Hopkins CW, Le Grand S, Walker RC et al. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput. 2015; 11:1864–74. 10.1021/ct5010406. PubMed DOI
Stadlbauer P, Islam B, Otyepka M et al. Insights into G-quadruplex–hemin dynamics using atomistic simulations: implications for reactivity and folding. J Chem Theory Comput. 2021; 17:1883–99. 10.1021/acs.jctc.0c01176. PubMed DOI
Le Grand S, Götz AW, Walker RC SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun. 2013; 184:374–80. 10.1016/j.cpc.2012.09.022. DOI
Case DA, Ben-Shalom IY, Brozell SR et al. AMBER 2018. 2018; University of California, San Francisco.
Barducci A, Bussi G, Parrinello M Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett. 2008; 100:020603. 10.1103/PhysRevLett.100.020603. PubMed DOI
Tribello GA, Bonomi M, Branduardi D et al. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13. 10.1016/j.cpc.2013.09.018. DOI
Case DA, Aktulga HM, Belfon K et al. Amber 2021. 2021; University of California, San Francisco.
Roe DR, Cheatham TE PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013; 9:3084–95. 10.1021/ct400341p. PubMed DOI
Humphrey W, Dalke A, Schulten K VMD: visual molecular dynamics. J Mol Graphics. 1996; 14:33–8. 10.1016/0263-7855(96)00018-5. PubMed DOI
Dickerhoff J, Jang J, Yang D Best method to determine DNA G-quadruplex folding: the PubMed DOI PMC
Víšková P, Ištvánková E, Ryneš J et al. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun. 2024; 15:1992. 10.1038/s41467-024-46221-y. PubMed DOI PMC
Krafcikova M, Dzatko S, Caron C et al. Monitoring DNA–ligand interactions in living human cells using NMR spectroscopy. J Am Chem Soc. 2019; 141:13281–5. 10.1021/jacs.9b03031. PubMed DOI
Broft P, Dzatko S, Krafcikova M et al. In-cell NMR spectroscopy of functional riboswitch aptamers in eukaryotic cells. Angew Chem Int Ed. 2021; 60:865–72. 10.1002/anie.202007184. PubMed DOI PMC
Bao H-L, Ishizuka T, Sakamoto T et al. Characterization of human telomere RNA G-quadruplex structures PubMed DOI PMC
Wang C, Xu G, Liu X et al. PubMed DOI
Hänsel R, Foldynová-Trantírková S, Löhr F et al. Evaluation of parameters critical for observing nucleic acids inside living PubMed DOI
Liu L, Wang K, Liu W et al. Spatial matching selectivity and solution structure of organic–metal hybrid to quadruplex–duplex hybrid. Angew Chem Int Ed. 2021; 60:20833–9. 10.1002/anie.202106256. PubMed DOI
Sullivan H-J, Readmond C, Radicella C et al. Binding of telomestatin, TMPyP4, BSU6037, and BRACO19 to a telomeric G-quadruplex–duplex hybrid probed by all-atom molecular dynamics simulations with explicit solvent. ACS Omega. 2018; 3:14788–806. 10.1021/acsomega.8b01574. PubMed DOI PMC
Roy S, Bhattacharya S Chemical information and computational modeling of targeting hybrid nucleic acid structures of PubMed DOI
Liu L-Y, Ma T-Z, Zeng Y-L et al. Structural basis of pyridostatin and its derivatives specifically binding to G-quadruplexes. J Am Chem Soc. 2022; 144:11878–87. 10.1021/jacs.2c04775. PubMed DOI