Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium

. 2004 Feb ; 112 (5) : 221-30. [epub] 20040113

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid14722711

To determine the influence of increased gene expression and amplification in colorectal carcinoma on chromatin structure, the nuclear distances between pairs of bacterial artificial chromosome (BAC) clones with genomic separation from 800 to 29,000 kb were measured and compared between the tumor and parallel epithelial cells of six patients. The nuclear distances were measured between the loci in chromosomal bands 7p22.3-7p21.3; 7q35-7q36.3; 11p15.5-11p15.4; 20p13; 20p12.2; 20q11.21 and 20q12 where increased expression had been found in all types of colorectal carcinoma. The loci were visualized by three-dimensional fluorescence in situ hybridization using 22 BAC clones. Our results show that for short genomic separations, mean nuclear distance increases linearly with increased genomic separation. The results for some pairs of loci fell outside this linear slope, indicating the existence of different levels of chromatin folding. For the same genomic separations the nuclear distances were frequently shorter for tumor as compared with epithelial cells. Above the initial growing phase of the nuclear distances, a plateau phase was observed in both cell types where the increase in genomic separation was not accompanied by an increase in nuclear distance. The ratio of the mean nuclear distances between the corresponding loci in tumor and epithelium cells decreases with increasing amplification of loci. Our results further show that the large-scale chromatin folding might differ for specific regions of chromosomes and that it is basically preserved in tumor cells in spite of the amplification of many loci.

Zobrazit více v PubMed

Trends Genet. 1998 Oct;14(10):403-9 PubMed

EMBO Rep. 2002 Mar;3(3):224-9 PubMed

Science. 1987 Oct 9;238(4824):193-7 PubMed

Cytometry. 1999 Aug 1;36(4):279-93 PubMed

Crit Rev Oncog. 1990;2(1):35-51 PubMed

Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2710-4 PubMed

Exp Cell Res. 1999 Feb 25;247(1):176-88 PubMed

Oncogene. 2001 May 28;20(24):3156-65 PubMed

Science. 2002 Sep 13;297(5588):1824-7 PubMed

Chromosoma. 2002 Dec;111(5):321-31 PubMed

Cancer Res. 2002 Aug 1;62(15):4352-63 PubMed

Blood. 1999 Feb 15;93(4):1197-207 PubMed

Cold Spring Harb Symp Quant Biol. 1993;58:655-67 PubMed

Cancer Res. 2002 Feb 15;62(4):1134-8 PubMed

J Cell Biol. 1997 Dec 29;139(7):1597-610 PubMed

J Cell Biol. 1995 Sep;130(6):1239-49 PubMed

Cancer. 2001 Feb 15;91(4):721-6 PubMed

J Cell Biol. 1999 Sep 20;146(6):1211-26 PubMed

Cancer Res. 1993 Jul 1;53(13):3098-102 PubMed

Cytometry. 2001 Sep 1;45(1):1-12 PubMed

Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3076-80 PubMed

Exp Cell Res. 1996 Dec 15;229(2):189-97 PubMed

Cell. 1990 Jun 1;61(5):759-67 PubMed

Gene. 2002 Jun 12;292(1-2):13-24 PubMed

Anal Cell Pathol. 2000;20(4):173-85 PubMed

Cytogenet Cell Genet. 2000;88(1-2):145-52 PubMed

Cancer Res. 1994 Nov 1;54(21):5523-6 PubMed

Chromosome Res. 1997 May;5(3):157-66 PubMed

Trends Genet. 2000 Apr;16(4):168-74 PubMed

Int J Cancer. 2001 Jun 15;92(6):816-23 PubMed

Chromosome Res. 2002;10 (7):535-48 PubMed

Hum Pathol. 2000 Jan;31(1):109-14 PubMed

Cold Spring Harb Symp Quant Biol. 1993;58:645-54 PubMed

Exp Cell Res. 2003 Sep 10;289(1):11-26 PubMed

Trends Mol Med. 2002;8(4 Suppl):S43-8 PubMed

Science. 2001 Aug 10;293(5532):1074-80 PubMed

J Cell Biochem. 1998 Aug 1;70(2):159-71 PubMed

Int Rev Cytol. 1995;162A:151-89 PubMed

Exp Cell Res. 1998 Sep 15;243(2):398-407 PubMed

Science. 1992 Oct 30;258(5083):818-21 PubMed

Science. 1998 Apr 24;280(5363):547-53 PubMed

Nat Genet. 2002 Jun;31(2):141-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...