Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-ray-Induced DNA Double-Strand Break Repair
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
H1601/16-1
Deutsche Forschungsgemeinschaft
19-09212S
Grantová Agentura České Republiky
20-04109
Grantová Agentura České Republiky
PubMed
34771723
PubMed Central
PMC8582740
DOI
10.3390/cancers13215561
PII: cancers13215561
Knihovny.cz E-zdroje
- Klíčová slova
- DNA double-strand breaks, ionizing photon irradiation, persistent homology, single-molecule localization microscopy, topology of MRE11 clusters, topology of γH2AX clusters,
- Publikační typ
- časopisecké články MeSH
DNA double-strand breaks (DSBs), known as the most severe damage in chromatin, were induced in breast cancer cells and normal skin fibroblasts by 2 Gy ionizing photon radiation. In response to DSB induction, phosphorylation of the histone variant H2AX to γH2AX was observed in the form of foci visualized by specific antibodies. By means of super-resolution single-molecule localization microscopy (SMLM), it has been recently shown in a first article about these data that these foci can be separated into clusters of about the same size (diameter ~400 nm). The number of clusters increased with the dose applied and decreased with the repair time. It has also been shown that during the repair period, antibody-labeled MRE11 clusters of about half of the γH2AX cluster diameter were formed inside several γH2AX clusters. MRE11 is part of the MRE11-RAD50-NBS1 (MRN) complex, which is known as a DNA strand resection and broken-end bridging component in homologous recombination repair (HRR) and alternative non-homologous end joining (a-NHEJ). This article is a follow-up of the former ones applying novel procedures of mathematics (topology) and similarity measurements on the data set: to obtain a measure for cluster shape and shape similarities, topological quantifications employing persistent homology were calculated and compared. In addition, based on our findings that γH2AX clusters associated with heterochromatin show a high degree of similarity independently of dose and repair time, these earlier published topological analyses and similarity calculations comparing repair foci within individual cells were extended by topological data averaging (2nd-generation heatmaps) over all cells analyzed at a given repair time point; thereby, the two dimensions (0 and 1) expressed by components and holes were studied separately. Finally, these mean value heatmaps were averaged, in addition. For γH2AX clusters, in both normal fibroblast and MCF-7 cancer cell lines, an increased similarity was found at early time points (up to 60 min) after irradiation for both components and holes of clusters. In contrast, for MRE11, the peak in similarity was found at later time points (2 h up to 48 h) after irradiation. In general, the normal fibroblasts showed quicker phosphorylation of H2AX and recruitment of MRE11 to γH2AX clusters compared to breast cancer cells and a shorter time interval of increased similarity for γH2AX clusters. γH2AX foci and randomly distributed MRE11 molecules naturally occurring in non-irradiated control cells did not show any significant topological similarity.
Institute for Theoretical Physics Heidelberg University 69120 Heidelberg Germany
Institute of Biophysics of the Czech Academy of Sciences 612 65 Brno Czech Republic
Kirchhoff Institute for Physics Heidelberg University 69120 Heidelberg Germany
Zobrazit více v PubMed
Falk M., Hausmann M. A paradigm revolution or just better resolution—Will newly emerging superresolution techniques identify chromatin architecture as a key factor in radiation-induced DNA damage and repair regulation? Cancers. 2021;13:18. doi: 10.3390/cancers13010018. PubMed DOI PMC
Lee J.-H., Hausmann M. Super-resolution radiation biology: From bio-dosimetry towards nano-studies of DNA repair mechanisms. In: Behzadi P., editor. DNA-Repair. Intech-Open; Rijeka, Hrvatska: 2021. DOI
Jezkova L., Zadneprianetc M., Kulikova E., Smirnova E., Bulanova T., Depes D., Falkova I., Boreyko A., Krasavin E., Davidkova M., et al. Particles with similar LET values generate DNA breaks of different complexity and reparability: A high-resolution microscopy analysis of γH2AX/53BP1 foci. Nanoscale. 2018;10:1162–1179. doi: 10.1039/C7NR06829H. PubMed DOI
Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur. Phys. J. 2018;72:158. doi: 10.1140/epjd/e2018-90148-1. DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining OMICS spatiotemporal dimensions using exciting new nanoscopy techniques to asses complex cell responses to DNA damage—PART A (Radiomics) Crit. Rev. Eukaryot. Gene Express. 2014;24:205–223. doi: 10.1615/CritRevEukaryotGeneExpr.2014010313. PubMed DOI
Falk M., Hausmann M., Lukášová E., Biswas A., Hildenbrand G., Davídková M., Krasavin E., Kleibl Z., Falková I., Ježková L., et al. Determining OMICS spatiotemporal dimensions using exciting new nanoscopy techniques to asses complex cell responses to DNA damage—PART B (Structuromics) Crit. Rev. Eukaryot. Gene Express. 2014;24:225–247. doi: 10.1615/CritRevEukaryotGeneExpr.v24.i3.40. PubMed DOI
Roobol S.J., van den Bent I., van Cappellen W.A., Abraham T.E., Paul M.W., Kanaar R., Houtsmuller A.B., van Gent D.C., Essers J. Comparison of high- and low-LET radiation-induced DNA double-strand break processing in living cells. Int. J. Mol. Sci. 2020;21:6602. doi: 10.3390/ijms21186602. PubMed DOI PMC
Schipler A., Iliakis G. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013;41:7589–7605. doi: 10.1093/nar/gkt556. PubMed DOI PMC
Rogakou E.P., Pilch D.R., Orr A.H., Ivanova V.S., Bonner W.M. DNA double-starnd breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998;273:5858–5868. doi: 10.1074/jbc.273.10.5858. PubMed DOI
Redon C.E., Dickey J.S., Bonner W.M., Sedelnikova O.A. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv. Space Res. 2009;43:1171–1178. doi: 10.1016/j.asr.2008.10.011. PubMed DOI PMC
Eberlein U., Peper M., Fernandez M., Lassmann M., Scherthan H. Calibration of the γ-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS ONE. 2015;10:e0123174. doi: 10.1371/journal.pone.0123174. PubMed DOI PMC
Hausmann M., Wagner E., Lee J.-H., Schrock G., Schaufler W., Krufczik M., Papenfuß F., Port M., Bestvater F., Scherthan H. Super-resolution localization microscopy of radiation-induced histone H2AX-phosphorylation in relation to H3K9-trimethylation in HeLa cells. Nanoscale. 2018;10:4320–4331. doi: 10.1039/C7NR08145F. PubMed DOI
Belyaev I.Y. Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat. Res. Rev. Mutat. Res. 2010;704:132–141. doi: 10.1016/j.mrrev.2010.01.011. PubMed DOI
Moquet J., Rothkamm K., Barnard S., Ainsbury E. Radiation Biomarkers in Large Scale Human Health Effects Studies. J. Pers. Med. 2020;10:155. doi: 10.3390/jpm10040155. PubMed DOI PMC
Cremer C., Kaufmann R., Gunkel M., Pres S., Weiland Y., Müller P., Ruckelshausen T., Lemmer P., Geiger F., Degenhard M., et al. Superresolution imaging of biological nanostructures by Spectral Precision Distance Microscopy (SPDM) Biotechnol. J. 2011;6:1037–1051. doi: 10.1002/biot.201100031. PubMed DOI
Cremer C., Masters B.R. Resolution Enhancement Techniques in Microscopy. Eur. Phys. J. H. 2013;38:281–344. doi: 10.1140/epjh/e2012-20060-1. DOI
Miné-Hattab J., Heltberg M., Villemeur M., Guedj C., Mora T., Walczak A.M., Dahan M., Taddei A. Single molecule microscopy reveals key physical features of repair foci in living cells. eLife. 2021;10:e60577. doi: 10.7554/eLife.60577. PubMed DOI PMC
Natale F., Rapp A., Yu W., Maiser A., Harz H., Scholl A., Grulich S., Anton T., Hörl D., Chen W., et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 2017;8:15760. doi: 10.1038/ncomms15760. PubMed DOI PMC
Hausmann M., Falk M., Neitzel C., Hofmann A., Biswas A., Gier T., Falkova I., Heermann D.W., Hildenbrand G. Elucidation of the clustered nano-architecture of radiation-induced DNA damage sites and surrounding chromatin in cancer cells: A Single Molecule Localization Microscopy approach. Int. J. Mol. Sci. 2021;22:3636. doi: 10.3390/ijms22073636. PubMed DOI PMC
Varga D., Majoros H., Ujfaludi Z., Erdélyi M., Pankotai T. Quantification of DNA damage induced repair focus formation via super-resolution dSTORM localization microscopy. Nanoscale. 2019;11:14226–14236. doi: 10.1039/C9NR03696B. PubMed DOI
Eryilmaz M., Schmitt E., Krufczik M., Theda F., Lee J.-H., Cremer C., Bestvater F., Schaufler W., Hausmann M., Hildenbrand G. Localization microscopy analyses of MRE11 clusters in 3D-conserved cell nuclei of different cell lines. Cancers. 2018;10:25. doi: 10.3390/cancers10010025. PubMed DOI PMC
Máté G., Hofmann A., Wenzel N., Heermann D.W. A topological similarity measure for proteins. Biochim. Biophys. Acta. 2014;1838:1180–1190. doi: 10.1016/j.bbamem.2013.08.019. PubMed DOI
Ghrist R. Barcodes: The persistent topology of data. Bull. Am. Math. Soc. 2007;45:61–76. doi: 10.1090/S0273-0979-07-01191-3. DOI
Hofmann A., Krufczik M., Heermann D.W., Hausmann M. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters. Int. J. Mol. Sci. 2018;19:2263. doi: 10.3390/ijms19082263. PubMed DOI PMC
Hausmann M., Neitzel C., Bobkova E., Nagel D., Hofmann A., Chramko T., Smirnova E., Kopečná O., Pagáčová E., Boreyko A., et al. Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected along Particle Damage Tracks. Front. Phys. Sect. Med. Phys. Imaging. 2020;8:473. doi: 10.3389/fphy.2020.578662. DOI
Jakob B., Splinter J., Conrad S., Voss K.-O., Zink D., Durante M., Löbrich M., Taucher-Scholz G. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 2011;39:6489–6499. doi: 10.1093/nar/gkr230. PubMed DOI PMC
Jakob B., Splinter J., Durante M., Taucher-Scholz G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl. Acad. Sci. USA. 2009;106:3172–3177. doi: 10.1073/pnas.0810987106. PubMed DOI PMC
Falk M., Lukasova E., Gabrielova B., Ondrej V., Kozubek S. Chromatin dynamics during DSB repair. Biochim. Biophys. Acta. 2007;1773:1534–1545. doi: 10.1016/j.bbamcr.2007.07.002. PubMed DOI
Falk M., Lukasova E., Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. 2010;704:88–100. doi: 10.1016/j.mrrev.2010.01.013. PubMed DOI
Rothkamm K., Krüger I., Thompson L.H., Löbrich M. Pathways of DNA doublestrand break repair during the mammalian cell cycle. Mol. Cell Biol. 2003;23:5706–5715. doi: 10.1128/MCB.23.16.5706-5715.2003. PubMed DOI PMC
Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell. Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC
Iliakis G., Murmann T., Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015;793:166–175. doi: 10.1016/j.mrgentox.2015.07.001. PubMed DOI
Jasin M., Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 2013;5:a012740. doi: 10.1101/cshperspect.a012740. PubMed DOI PMC
Iliakis G. Backup pathways of NHEJ in cells of higher eukaryotes: Cell cycle dependence. Radiother. Oncol. 2009;92:310–315. doi: 10.1016/j.radonc.2009.06.024. PubMed DOI
Shibata A., Jeggo P.A. Canonical DNA non-homologous end-joining; capacity versus fidelity. Br. J. Radiol. 2020;23:20190966. doi: 10.1259/bjr.20190966. PubMed DOI PMC
Löbrich M., Jeggo P.A. Process of resection-dependent nonhomologous end joining involving the Goddess Artemis. Trends Biochem. Sci. 2017;42:690–701. doi: 10.1016/j.tibs.2017.06.011. PubMed DOI PMC
Ceccaldi R., Rondinelli B., Andrea A.D.D. Repair pathway choices and consequences at the double-strand break. Trends Biol. 2016;26:52–64. doi: 10.1016/j.tcb.2015.07.009. PubMed DOI PMC
Shrivastav M., De Haro L.P., Nickoloff J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–147. doi: 10.1038/cr.2007.111. PubMed DOI
Brandsma I., Gent D.C. Pathway choice in DNA double strand break repair: Observations of a balancing act. Genome Integr. 2012;3:9. doi: 10.1186/2041-9414-3-9. PubMed DOI PMC
Aparicio T., Baer R., Gautier J. DNA double-strand break repair pathway choice and cancer. DNA Repair. 2014;19:169–175. doi: 10.1016/j.dnarep.2014.03.014. PubMed DOI PMC
Kakarougkas A., Jeggo P.A. DNA DSB repair pathway choice: An orchestrated handover mechanism. Br. J. Radiol. 2014;87:20130685. doi: 10.1259/bjr.20130685. PubMed DOI PMC
Clouaire T., Legube G. DNA double strand break repair pathway choice: A chromatin based decision? Nucleus. 2015;6:107–113. doi: 10.1080/19491034.2015.1010946. PubMed DOI PMC
Maier P., Hartmann L., Wenz F., Herskind C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci. 2016;17:102. doi: 10.3390/ijms17010102. PubMed DOI PMC
Li J., Xu X. DNA double-strand break repair: A tale of pathway choices. Acta Biochim. Biophys. Sin. 2016;48:641–646. doi: 10.1093/abbs/gmw045. PubMed DOI
Cremer T., Cremer M., Hübner B., Strickfaden H., Smeets D., Popken J., Sterr M., Markaki Y., Rippe K., Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. 2015;589:2931–2943. doi: 10.1016/j.febslet.2015.05.037. PubMed DOI
Cremer T., Cremer M., Hübner B., Silahtaroglu A., Hendzel M., Lanctôt C.H., Strickfaden H., Cremer C. The interchromatin compartment participates in the structural and functional organization of the cell nucleus. BioEssays. 2020;42:1900132. doi: 10.1002/bies.201900132. PubMed DOI
Shibata A., Jeggo P., Löbrich M. The pendulum of the Ku-Ku clock. DNA Repair. 2018;71:164–171. doi: 10.1016/j.dnarep.2018.08.020. PubMed DOI
Bakkenist C.J., Kastan M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. doi: 10.1038/nature01368. PubMed DOI
Du F., Zhang M., Li X., Yang C., Meng H., Wang D., Chang S., Xu Y., Price B., Sun Y. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair. Biochem. Biophys. Res. Commun. 2014;452:1034–1039. doi: 10.1016/j.bbrc.2014.09.038. PubMed DOI PMC
Myler L.R., Gallardo I.F., Soniat M.M., Deshpande R.A., Gonzalez X.B., Kim Y., Paull T.T., Finkelstein I.J. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol. Cell. 2017;67:891–898. doi: 10.1016/j.molcel.2017.08.002. PubMed DOI PMC
Lisby M., Barlow J.H., Burgess R.C., Rothstein R. Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell. 2004;118:699–713. doi: 10.1016/j.cell.2004.08.015. PubMed DOI
Scherthan H., Lee J.-H., Maus E., Schumann S., Muhtadi R., Chojowski R., Port M., Lassmann M., Bestvater F., Hausmann M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers. 2019;11:1877. doi: 10.3390/cancers11121877. PubMed DOI PMC
Hausmann M., Ilić N., Pilarczyk G., Lee J.-H., Logeswaran A., Borroni A.P., Krufczik M., Theda F., Waltrich N., Bestvater F., et al. Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research. Int. J. Mol. Sci. 2017;18:2066. doi: 10.3390/ijms18102066. PubMed DOI PMC
Jaccard P. Etude Comparative de La Distribution Florale Dans Une Portion des Alpes et Des Jura. Bull. Soc. Vaud. Sci. Nat. 1901;37:547–579.
Falk M., Falková I., Kopečná O., Bačíková A., Pagáčová E., Šimek D., Golan M., Kozubek S., Pekarová M., Follett S.E., et al. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci. Rep. 2018;8:14694. doi: 10.1038/s41598-018-32939-5. PubMed DOI PMC
Yuan J., Chen J. Mre11-rad50-nbs1 complex dictates DNA repair independent of H2AX. J. Biol. Chem. 2010;285:1097–1104. doi: 10.1074/jbc.M109.078436. PubMed DOI PMC
Haas K.T., Lee M.Y., Esposito A., Venkitaraman A.R. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucl. Acids Res. 2018;46:2398–2416. doi: 10.1093/nar/gkx1303. PubMed DOI PMC
Whelan D.R., Rothenberg E. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc. Nat. Acad. Sci. USA. 2021;118:e2021963118. doi: 10.1073/pnas.2021963118. PubMed DOI PMC
Murmann-Konda T., Soni A., Stuschke M., Iliakis G. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021;867:503372. doi: 10.1016/j.mrgentox.2021.503372. PubMed DOI
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change