Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29725040
PubMed Central
PMC5934395
DOI
10.1038/s41598-018-25088-2
PII: 10.1038/s41598-018-25088-2
Knihovny.cz E-zdroje
- MeSH
- akutní nemoc MeSH
- buněčná membrána patologie MeSH
- krysa rodu Rattus MeSH
- lipidy analýza MeSH
- membránové potenciály MeSH
- mozek patologie MeSH
- mozková hypoxie a ischemie patologie MeSH
- novorozená zvířata MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
Neonatal hypoxic-ischaemic (HI) encephalopathy is among the most serious complications in neonatology. In the present study, we studied the immediate (0 hour), subacute (36 hours) and late (144 hours) responses of the neonatal brain to experimental HI insult in laboratory rats. At the striatal level, the mass spectrometry imaging revealed an aberrant plasma membrane distribution of Na+/K+ ions in the oedema-affected areas. The failure of the Na+/K+ gradients was also apparent in the magnetic resonance imaging measurements, demonstrating intracellular water accumulation during the acute phase of the HI insult. During the subacute phase, compared with the control brains, an incipient accumulation of an array of N-acylphosphatidylethanolamine (NAPE) molecules was detected in the HI-affected brains, and both the cytotoxic and vasogenic types of oedema were detected. In the severely affected brain areas, abnormal distributions of the monosialogangliosides GM2 and GM3 were observed in two-thirds of the animals exposed to the insult. During the late stage, a partial restoration of the brain tissue was observed in most rats in both the in vivo and ex vivo studies. These specific molecular changes may be further utilized in neonatology practice in proposing and testing novel therapeutic strategies for the treatment of neonatal HI encephalopathy.
Institute of Experimental Pharmacology and Toxicology CEM of the SAS Bratislava 841 04 Slovakia
Institute of Microbiology of the Czech Academy of Sciences Prague 142 20 Czech Republic
Slovak University of Technology Central Laboratories Bratislava 812 37 Slovakia
Zobrazit více v PubMed
Placha K, Luptakova D, Baciak L, Ujhazy E, Juranek I. Neonatal brain injury as a consequence of insufficient cerebral oxygenation. Neuroendocrinol. Lett. 2016;37:79–96. PubMed
Douglas-Escobar M, Weiss MD. Hypoxic-Ischemic Encephalopathy A Review for the Clinician. Jama Pediatrics. 2015;169:397–403. doi: 10.1001/jamapediatrics.2014.3269. PubMed DOI
Lai, M. C. & Yang, S. N. Perinatal Hypoxic-Ischemic Encephalopathy. J. Biomed. Biotechnol (2011). PubMed PMC
Gunn AJ, Bennet L. Fetal Hypoxia Insults and Patterns of Brain Injury: Insights from Animal Models. Clin. Perinatol. 2009;36:579–593. doi: 10.1016/j.clp.2009.06.007. PubMed DOI PMC
Hagberg H, Edwards AD, Groenendaal F. Perinatal brain damage: The term infant. Neurobiol. Dis. 2016;92:102–112. doi: 10.1016/j.nbd.2015.09.011. PubMed DOI PMC
Perlman JM. Pathogenesis of hypoxic-ischemic brain injury. J. Perinatol. 2007;27:S39–S46. doi: 10.1038/sj.jp.7211716. DOI
Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum. Dev. 2004;80:125–141. doi: 10.1016/j.earlhumdev.2004.06.003. PubMed DOI
Wang XY, et al. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp. Ther. Med. 2013;6:263–267. doi: 10.3892/etm.2013.1116. PubMed DOI PMC
Ten VS, Starkov A. Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol. Res. Int. 2012;2012:542976. doi: 10.1155/2012/542976. PubMed DOI PMC
Thornton C, et al. Molecular Mechanisms of NeonatalBrain Injury. Neurol. Res. Int. 2012;2012:16. doi: 10.1155/2012/506320. PubMed DOI PMC
Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014;8:40. doi: 10.3389/fnins.2014.00040. PubMed DOI PMC
Esposito E, Cordaro M, Cuzzocrea S. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol. Res. 2014;86:26–31. doi: 10.1016/j.phrs.2014.05.009. PubMed DOI
Jacobs SE, Tarnow-Mordi WO. Therapeutic hypothermia for newborn infants with hypoxic-ischaemic encephalopathy. J. Paediatr. Child Health. 2010;46:568–576. doi: 10.1111/j.1440-1754.2010.01880.x. PubMed DOI
Azzopardi DV, et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. N. Engl. J. Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854. PubMed DOI
Antonucci R, Porcella A, Pilloni MD. Perinatal asphyxia in the term newborn. J. Pediat. Neonat. Individual. Med. 2014;3:1–14.
Garfinkle J, et al. Cerebral Palsy after Neonatal Encephalopathy: How Much Is Preventable? J. Pediatr. 2015;167:58–U417. doi: 10.1016/j.jpeds.2015.02.035. PubMed DOI
Shah PS, Ohlsson A, Perlman M. Hypothermia to treat neonatal hypoxic ischemic encephalopathy: systematic review. Arch. Pediatr. Adolesc. Med. 2007;161:951–958. doi: 10.1001/archpedi.161.10.951. PubMed DOI
Novak J, et al. Batch-processing of Imaging or Liquid-Chromatography Mass Spectrometry Datasets and De Novo Sequencing of Polyketide Siderophores. BBA Prot. Proteom. 2017;1865:768–775. doi: 10.1016/j.bbapap.2016.12.003. PubMed DOI
Moesgaard B, Petersen G, Jaroszewski JW, Hansen HS. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain. A (31)P NMR and enzyme activity study. J. Lipid Res. 2000;41:985–990. PubMed
Berger C, et al. Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J. Neurochem. 2004;88:1159–1167. PubMed
Degn M, et al. Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice. J. Neurochem. 2007;103:1907–1916. doi: 10.1111/j.1471-4159.2007.04892.x. PubMed DOI
Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci. 2002;22:9771–9775. doi: 10.1523/JNEUROSCI.22-22-09771.2002. PubMed DOI PMC
Kilaru, A. et al. Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion. J. Glyc. Lipidomics1 (2011). PubMed PMC
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta. 1999;1455:105–138. doi: 10.1016/S0925-4439(99)00074-5. PubMed DOI
Vannucci RC, Towfighi J, Vannucci SJ. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J. Cereb. Blood Flow Metab. 2004;24:1090–1097. doi: 10.1097/01.WCB.0000133250.03953.63. PubMed DOI
Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain-damage in the rat. Ann. Neurol. 1981;9:131–141. doi: 10.1002/ana.410090206. PubMed DOI
van de Looij Y, Chatagner A, Huppi PS, Gruetter R, Sizonenko SV. Longitudinal MR Assessment of Hypoxic Ischemic Injury in the Immature Rat Brain. Magn. Reson. Med. 2011;65:305–312. doi: 10.1002/mrm.22617. PubMed DOI
Sherwood, N. & Timiras, P. S. A Stereotaxic Atlas of the Developing Rat Brain (University of California Press, 1970).
Novak J, Lemr K, Schug KA, Havlicek V. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra. J. Am. Soc. Mass Spectrom. 2015;26:1780–1786. doi: 10.1007/s13361-015-1211-1. PubMed DOI
Ofner J, et al. Chemometric Analysis of Multisensor Hyperspectral Images of Precipitated Atmospheric Particulate Matter. Anal. Chem. 2015;87:9413–9420. doi: 10.1021/acs.analchem.5b02272. PubMed DOI
Bonta M, Hegedus B, Limbeck A. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples. Anal. Chim. Acta. 2016;908:54–62. doi: 10.1016/j.aca.2015.12.048. PubMed DOI
Nischkauer W, Vanhaecke F, Bernacchi S, Hervvig C, Limbeck A. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks. Spectrochim. Acta Part B-Atomic Spec. 2014;101:123–129. doi: 10.1016/j.sab.2014.07.023. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab. 2016;36:513–538. doi: 10.1177/0271678X15617172. PubMed DOI PMC
Paoletti L, Elena C, Domizi P, Banchio C. Role of Phosphatidylcholine During Neuronal Differentiation. Iubmb Life. 2011;63:714–720. PubMed
Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE) Biochimie. 2012;94:75–85. doi: 10.1016/j.biochi.2011.04.023. PubMed DOI
Nielsen MM, et al. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci. Rep. 2016;6:39571. doi: 10.1038/srep39571. PubMed DOI PMC
Whitehead SN, et al. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011;6:e20808. doi: 10.1371/journal.pone.0020808. PubMed DOI PMC
Tan WKM, Williams CE, Mallard CE, Gluckman PD. Monosialoganglioside GM1 treatment after a hypoxic-ischemic episode reduces the vulnerability of the fetal sheep brain to subsequent injuries. Am. J. Obstet. Gynecol. 1994;170:663–670. doi: 10.1016/S0002-9378(94)70245-4. PubMed DOI
Trindade VMT, et al. Effects of Neonatal Hypoxia/Ischemia on Ganglioside Expression in the Rat Hippocampus. Neurochem. Res. 2001;26:591–597. doi: 10.1023/A:1010974917308. PubMed DOI
Mocchetti I, Brown M. Targeting Neurotrophin Receptors in the Central Nervous System. CNS & Neurol. Dis. - Drug Targets. 2008;7:71–82. doi: 10.2174/187152708783885138. PubMed DOI
Lohninger H, Offer J. Multisensor hyperspectral imaging as a versatile tool for image-based chemical structure determination. Spectrosc. Eur. 2014;26:6–10.