Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult

. 2018 May 03 ; 8 (1) : 6952. [epub] 20180503

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29725040
Odkazy

PubMed 29725040
PubMed Central PMC5934395
DOI 10.1038/s41598-018-25088-2
PII: 10.1038/s41598-018-25088-2
Knihovny.cz E-zdroje

Neonatal hypoxic-ischaemic (HI) encephalopathy is among the most serious complications in neonatology. In the present study, we studied the immediate (0 hour), subacute (36 hours) and late (144 hours) responses of the neonatal brain to experimental HI insult in laboratory rats. At the striatal level, the mass spectrometry imaging revealed an aberrant plasma membrane distribution of Na+/K+ ions in the oedema-affected areas. The failure of the Na+/K+ gradients was also apparent in the magnetic resonance imaging measurements, demonstrating intracellular water accumulation during the acute phase of the HI insult. During the subacute phase, compared with the control brains, an incipient accumulation of an array of N-acylphosphatidylethanolamine (NAPE) molecules was detected in the HI-affected brains, and both the cytotoxic and vasogenic types of oedema were detected. In the severely affected brain areas, abnormal distributions of the monosialogangliosides GM2 and GM3 were observed in two-thirds of the animals exposed to the insult. During the late stage, a partial restoration of the brain tissue was observed in most rats in both the in vivo and ex vivo studies. These specific molecular changes may be further utilized in neonatology practice in proposing and testing novel therapeutic strategies for the treatment of neonatal HI encephalopathy.

Zobrazit více v PubMed

Placha K, Luptakova D, Baciak L, Ujhazy E, Juranek I. Neonatal brain injury as a consequence of insufficient cerebral oxygenation. Neuroendocrinol. Lett. 2016;37:79–96. PubMed

Douglas-Escobar M, Weiss MD. Hypoxic-Ischemic Encephalopathy A Review for the Clinician. Jama Pediatrics. 2015;169:397–403. doi: 10.1001/jamapediatrics.2014.3269. PubMed DOI

Lai, M. C. & Yang, S. N. Perinatal Hypoxic-Ischemic Encephalopathy. J. Biomed. Biotechnol (2011). PubMed PMC

Gunn AJ, Bennet L. Fetal Hypoxia Insults and Patterns of Brain Injury: Insights from Animal Models. Clin. Perinatol. 2009;36:579–593. doi: 10.1016/j.clp.2009.06.007. PubMed DOI PMC

Hagberg H, Edwards AD, Groenendaal F. Perinatal brain damage: The term infant. Neurobiol. Dis. 2016;92:102–112. doi: 10.1016/j.nbd.2015.09.011. PubMed DOI PMC

Perlman JM. Pathogenesis of hypoxic-ischemic brain injury. J. Perinatol. 2007;27:S39–S46. doi: 10.1038/sj.jp.7211716. DOI

Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum. Dev. 2004;80:125–141. doi: 10.1016/j.earlhumdev.2004.06.003. PubMed DOI

Wang XY, et al. Progesterone attenuates cerebral edema in neonatal rats with hypoxic-ischemic brain damage by inhibiting the expression of matrix metalloproteinase-9 and aquaporin-4. Exp. Ther. Med. 2013;6:263–267. doi: 10.3892/etm.2013.1116. PubMed DOI PMC

Ten VS, Starkov A. Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol. Res. Int. 2012;2012:542976. doi: 10.1155/2012/542976. PubMed DOI PMC

Thornton C, et al. Molecular Mechanisms of NeonatalBrain Injury. Neurol. Res. Int. 2012;2012:16. doi: 10.1155/2012/506320. PubMed DOI PMC

Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014;8:40. doi: 10.3389/fnins.2014.00040. PubMed DOI PMC

Esposito E, Cordaro M, Cuzzocrea S. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol. Res. 2014;86:26–31. doi: 10.1016/j.phrs.2014.05.009. PubMed DOI

Jacobs SE, Tarnow-Mordi WO. Therapeutic hypothermia for newborn infants with hypoxic-ischaemic encephalopathy. J. Paediatr. Child Health. 2010;46:568–576. doi: 10.1111/j.1440-1754.2010.01880.x. PubMed DOI

Azzopardi DV, et al. Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. N. Engl. J. Med. 2009;361:1349–1358. doi: 10.1056/NEJMoa0900854. PubMed DOI

Antonucci R, Porcella A, Pilloni MD. Perinatal asphyxia in the term newborn. J. Pediat. Neonat. Individual. Med. 2014;3:1–14.

Garfinkle J, et al. Cerebral Palsy after Neonatal Encephalopathy: How Much Is Preventable? J. Pediatr. 2015;167:58–U417. doi: 10.1016/j.jpeds.2015.02.035. PubMed DOI

Shah PS, Ohlsson A, Perlman M. Hypothermia to treat neonatal hypoxic ischemic encephalopathy: systematic review. Arch. Pediatr. Adolesc. Med. 2007;161:951–958. doi: 10.1001/archpedi.161.10.951. PubMed DOI

Novak J, et al. Batch-processing of Imaging or Liquid-Chromatography Mass Spectrometry Datasets and De Novo Sequencing of Polyketide Siderophores. BBA Prot. Proteom. 2017;1865:768–775. doi: 10.1016/j.bbapap.2016.12.003. PubMed DOI

Moesgaard B, Petersen G, Jaroszewski JW, Hansen HS. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain. A (31)P NMR and enzyme activity study. J. Lipid Res. 2000;41:985–990. PubMed

Berger C, et al. Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J. Neurochem. 2004;88:1159–1167. PubMed

Degn M, et al. Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice. J. Neurochem. 2007;103:1907–1916. doi: 10.1111/j.1471-4159.2007.04892.x. PubMed DOI

Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci. 2002;22:9771–9775. doi: 10.1523/JNEUROSCI.22-22-09771.2002. PubMed DOI PMC

Kilaru, A. et al. Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion. J. Glyc. Lipidomics1 (2011). PubMed PMC

Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta. 1999;1455:105–138. doi: 10.1016/S0925-4439(99)00074-5. PubMed DOI

Vannucci RC, Towfighi J, Vannucci SJ. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J. Cereb. Blood Flow Metab. 2004;24:1090–1097. doi: 10.1097/01.WCB.0000133250.03953.63. PubMed DOI

Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain-damage in the rat. Ann. Neurol. 1981;9:131–141. doi: 10.1002/ana.410090206. PubMed DOI

van de Looij Y, Chatagner A, Huppi PS, Gruetter R, Sizonenko SV. Longitudinal MR Assessment of Hypoxic Ischemic Injury in the Immature Rat Brain. Magn. Reson. Med. 2011;65:305–312. doi: 10.1002/mrm.22617. PubMed DOI

Sherwood, N. & Timiras, P. S. A Stereotaxic Atlas of the Developing Rat Brain (University of California Press, 1970).

Novak J, Lemr K, Schug KA, Havlicek V. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra. J. Am. Soc. Mass Spectrom. 2015;26:1780–1786. doi: 10.1007/s13361-015-1211-1. PubMed DOI

Ofner J, et al. Chemometric Analysis of Multisensor Hyperspectral Images of Precipitated Atmospheric Particulate Matter. Anal. Chem. 2015;87:9413–9420. doi: 10.1021/acs.analchem.5b02272. PubMed DOI

Bonta M, Hegedus B, Limbeck A. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples. Anal. Chim. Acta. 2016;908:54–62. doi: 10.1016/j.aca.2015.12.048. PubMed DOI

Nischkauer W, Vanhaecke F, Bernacchi S, Hervvig C, Limbeck A. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks. Spectrochim. Acta Part B-Atomic Spec. 2014;101:123–129. doi: 10.1016/j.sab.2014.07.023. PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab. 2016;36:513–538. doi: 10.1177/0271678X15617172. PubMed DOI PMC

Paoletti L, Elena C, Domizi P, Banchio C. Role of Phosphatidylcholine During Neuronal Differentiation. Iubmb Life. 2011;63:714–720. PubMed

Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE) Biochimie. 2012;94:75–85. doi: 10.1016/j.biochi.2011.04.023. PubMed DOI

Nielsen MM, et al. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci. Rep. 2016;6:39571. doi: 10.1038/srep39571. PubMed DOI PMC

Whitehead SN, et al. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011;6:e20808. doi: 10.1371/journal.pone.0020808. PubMed DOI PMC

Tan WKM, Williams CE, Mallard CE, Gluckman PD. Monosialoganglioside GM1 treatment after a hypoxic-ischemic episode reduces the vulnerability of the fetal sheep brain to subsequent injuries. Am. J. Obstet. Gynecol. 1994;170:663–670. doi: 10.1016/S0002-9378(94)70245-4. PubMed DOI

Trindade VMT, et al. Effects of Neonatal Hypoxia/Ischemia on Ganglioside Expression in the Rat Hippocampus. Neurochem. Res. 2001;26:591–597. doi: 10.1023/A:1010974917308. PubMed DOI

Mocchetti I, Brown M. Targeting Neurotrophin Receptors in the Central Nervous System. CNS & Neurol. Dis. - Drug Targets. 2008;7:71–82. doi: 10.2174/187152708783885138. PubMed DOI

Lohninger H, Offer J. Multisensor hyperspectral imaging as a versatile tool for image-based chemical structure determination. Spectrosc. Eur. 2014;26:6–10.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions

. 2024 Aug 07 ; 15 (15) : 2811-2821. [epub] 20240726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...