Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
CZ.02.2.69/0.0/0.0/20_079/0018294
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
Z.02.1.01/0.0/0.0/16_019/0000754
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
19-27454X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
35347273
PubMed Central
PMC9117130
DOI
10.1038/s41565-022-01087-3
PII: 10.1038/s41565-022-01087-3
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.
See more in PubMed
Ross, J. R. H. Contemporary Catalysis: Fundamentals and Current Applications (Elsevier, 2019).
Romero NA, Nicewicz DA. Organic photoredox catalysis. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI
Blaser HU, et al. Selective hydrogenation for fine chemicals: recent trends and new developments. Adv. Synth. Catal. 2003;345:103–151. doi: 10.1002/adsc.200390000. DOI
Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science. 2006;313:332–334. doi: 10.1126/science.1128383. PubMed DOI
Jagadeesh RV, et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI
Westerhaus FA, et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013;5:537–543. doi: 10.1038/nchem.1645. PubMed DOI
Li W, et al. General and chemoselective copper oxide catalysts for hydrogenation reactions. ACS Catal. 2019;9:4302–4307. doi: 10.1021/acscatal.8b04807. DOI
Cui JB, et al. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 2015;15:6295–6301. doi: 10.1021/acs.nanolett.5b00950. PubMed DOI
Kaur M, Nagaraja CM. Template-free synthesis of Zn1−xCdxS nanocrystals with tunable band structure for efficient water splitting and reduction of nitroaromatics in water. ACS Sustain. Chem. Eng. 2017;5:4293–4303. doi: 10.1021/acssuschemeng.7b00325. DOI
Goswami, A. et al. Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines. Chem. Eng. J. 382, 122469 (2020).
She W, et al. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl. Mater. Interfaces. 2018;10:17487–17487. doi: 10.1021/acsami.8b06791. PubMed DOI
Gong WB, et al. Nitrogen-doped carbon nanotube confined Co–Nx sites for selective hydrogenation of biomass-derived compounds. Adv. Mater. 2019;31:e1808341. doi: 10.1002/adma.201808341. PubMed DOI
Zhou, P. et al. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 3 e1601945 (2017). PubMed PMC
Kumar A, Kumar P, Paul S, Jain SL. Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGO nanocomposite as photocatalyst. Appl. Surf. Sci. 2016;386:103–114. doi: 10.1016/j.apsusc.2016.05.139. DOI
Chen PQ, et al. A visible-light-responsive metal-organic framework for highly efficient and selective photocatalytic oxidation of amines and reduction of nitroaromatics. J. Mater. Chem. A. 2019;7:27074–27080. doi: 10.1039/C9TA10723A. DOI
Gao WZ, Xu Y, Chena Y, Fu WF. Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni2P/CdS catalyst under visible-light irradiation. Chem. Commun. 2015;51:13217–13220. doi: 10.1039/C5CC04030B. PubMed DOI
Yu ZJ, et al. Photocatalytic hydrogenation of nitroarenes using Cu1.94S–Zn0.23Cd0.77S heteronanorods. Nano Res. 2018;11:3730–3738. doi: 10.1007/s12274-017-1944-1. DOI
Gelle A, et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2020;120:986–1041. doi: 10.1021/acs.chemrev.9b00187. PubMed DOI
Aslam U, Rao VG, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 2018;1:656–665. doi: 10.1038/s41929-018-0138-x. DOI
Furube, A. & Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mater. 9, e454 (2017).
Song YJ, et al. Selective photocatalytic synthesis of haloanilines from halonitrobenzenes over multifunctional AuPt/monolayer titanate nanosheet. ACS Catal. 2018;8:9656–9664. doi: 10.1021/acscatal.8b02662. DOI
Hao CH, et al. Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes. ACS Appl. Mater. Interfaces. 2018;10:23029–23036. doi: 10.1021/acsami.8b04044. PubMed DOI
Xiao Q, et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines. ACS Catal. 2016;6:1744–1753. doi: 10.1021/acscatal.5b02643. DOI
Aslam U, Chavez S, Linic S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017;12:1000–1005. doi: 10.1038/nnano.2017.131. PubMed DOI
Linic S, Chavez S, Elias R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 2021;20:916–924. doi: 10.1038/s41563-020-00858-4. PubMed DOI
Tagliabue G, et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 2020;19:1312–1318. doi: 10.1038/s41563-020-0737-1. PubMed DOI
Regulacio MD, Han MY. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016;49:511–519. doi: 10.1021/acs.accounts.5b00535. PubMed DOI
Bhattacharyya B, Pandey A. CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: synthesis, tunability, and photophysics. J. Am. Chem. Soc. 2016;138:10207–10213. doi: 10.1021/jacs.6b04981. PubMed DOI
Ghosh S, et al. Colloidal CuFeS2 nanocrystals: intermediate Fe d-band leads to high photothermal conversion efficiency. Chem. Mater. 2016;28:4848–4858. doi: 10.1021/acs.chemmater.6b02192. PubMed DOI PMC
Sugathan A, et al. Why does CuFeS2 resemble gold? J. Phys. Chem. Lett. 2018;9:696–701. doi: 10.1021/acs.jpclett.7b03190. PubMed DOI
Britt RD, Rao GD, Tao LZ. Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases. Nat. Rev. Chem. 2020;4:542–549. doi: 10.1038/s41570-020-0208-x. PubMed DOI PMC
Zhang X, et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 2017;8:14542. doi: 10.1038/ncomms14542. PubMed DOI PMC
Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015;10:25–34. doi: 10.1038/nnano.2014.311. PubMed DOI
Khaledialidusti, R., Mishra, A. K. & Barnoush, A. Temperature-dependent properties of magnetic CuFeS2 from first-principles calculations: structure, mechanics, and thermodynamics. AIP Adv. 9, 065021 (2019).
Bastola E, Bhandari KP, Subedi I, Podraza NJ, Ellingson RJ. Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals. MRS Commun. 2018;8:970–978. doi: 10.1557/mrc.2018.117. DOI
Abdel-Latif IA, Ammar HY. Adsorption and magnetic properties of Cu11MO12 (M = Cu, Ni and Co): ab initio study. Results Phys. 2017;7:4419–4426. doi: 10.1016/j.rinp.2017.11.011. DOI
Litman ZC, Wang YJ, Zhao HM, Hartwig JF. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature. 2018;560:355–359. doi: 10.1038/s41586-018-0413-7. PubMed DOI
Huang GF, et al. The atomic-resolution crystal structure of activated [Fe]-hydrogenase. Nat. Catal. 2019;2:537–543. doi: 10.1038/s41929-019-0289-4. DOI
Yang, Y. J. et al. Porous organic frameworks featured by distinct confining fields for the selective hydrogenation of biomass-derived ketones. Adv. Mater. 32, e1908243 (2020). PubMed
Fukui M, Koshida W, Tanaka A, Hashimoto K, Kominami H. Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO2 utilizing methylamine as a hydrogen donor. Appl. Catal. B. 2020;268:118446. doi: 10.1016/j.apcatb.2019.118446. DOI
Zhang H, et al. P/N co-doped carbon derived from cellulose: a metal-free photothermal catalyst for transfer hydrogenation of nitroarenes. Appl. Surf. Sci. 2019;487:616–624. doi: 10.1016/j.apsusc.2019.05.144. DOI
Zhang S, et al. Photocatalytic organic transformations: simultaneous oxidation of aromatic alcohols and reduction of nitroarenes on CdLa2S4 in one reaction system. Appl. Catal. B. 2018;233:084. doi: 10.1016/j.apcatb.2018.03.084. DOI
Zhang SJ, et al. Ultra-low content of Pt modified CdS nanorods: preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system. J. Hazard. Mater. 2018;360:182–192. doi: 10.1016/j.jhazmat.2018.07.108. PubMed DOI
Karthik R, et al. A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces. 2017;9:6547–6559. doi: 10.1021/acsami.6b14242. PubMed DOI
Zhang LQ, et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B. 2017;203:003. doi: 10.1016/j.apcatb.2016.10.003. DOI
Xu SD, Tang JH, Zhou QW, Du J, Li HX. Interfacing anatase with carbon layers for photocatalytic nitroarene hydrogenation. ACS Sustain. Chem. Eng. 2019;7:16190–16199. doi: 10.1021/acssuschemeng.9b03149. DOI
Challagulla, S., Tarafder, K., Ganesan, R. & Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 7, 8783 (2017). PubMed PMC
Kumar, A., Paul, B., Boukherroub, R. & Jain, S. L. Highly efficient conversion of the nitroarenes to amines at the interface of a ternary hybrid containing silver nanoparticles doped reduced graphene oxide/graphitic carbon nitride under visible light. J. Hazard. Mater. 387, 121700 (2020). PubMed
Kong L, Mayorga-Martinez CC, Guan JG, Pumera M. Fuel-free light-powered TiO2/Pt Janus micromotors for enhanced nitroaromatic explosives degradation. ACS Appl. Mater. Interfaces. 2018;10:22427–22434. doi: 10.1021/acsami.8b05776. PubMed DOI
Lin LL, et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 2019;14:354–361. doi: 10.1038/s41565-019-0366-5. PubMed DOI
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment