MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated

. 2016 Dec 06 ; 7 () : 13701. [epub] 20161206

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27922010

Grantová podpora
P 24766 Austrian Science Fund FWF - Austria

Lung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib. Lung cancer cells resistant to MEK inhibition become highly sensitive upon loss of ATM both in vitro and in vivo. Mechanistically, ATM mediates crosstalk between the prosurvival MEK/ERK and AKT/mTOR pathways. ATM loss also enhances the sensitivity of KRAS- or BRAF-mutant lung cancer cells to MEK inhibition. Thus, ATM mutational status in lung cancer is a mechanistic biomarker for MEK inhibitor response, which may improve patient stratification and extend the applicability of these drugs beyond RAS and BRAF mutant tumours.

Zobrazit více v PubMed

Marshall E. Cancer research and the $90 billion metaphor. Science 331, 1540–1541 (2011). PubMed

Imielinski M. et al.. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012). PubMed PMC

Govindan R. et al.. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012). PubMed PMC

Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014). PubMed PMC

Ding L. et al.. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008). PubMed PMC

Lynch T. J. et al.. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004). PubMed

Shaw A. T. et al.. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013). PubMed

Drilon A. et al.. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013). PubMed PMC

Nijman S. M. & Friend S. H. Cancer. Potential of the synthetic lethality principle. Science 342, 809–811 (2013). PubMed

Shiloh Y. & Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013). PubMed

Ahmed M. & Rahman N. ATM and breast cancer susceptibility. Oncogene 25, 5906–5911 (2006). PubMed

Cancer Genome Atlas Research, N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014). PubMed PMC

Biankin A. V. et al.. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012). PubMed PMC

Blumenschein G. R. Jr. et al.. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)dagger. Ann. Oncol. 26, 894–901 (2015). PubMed PMC

Flaherty K. T. et al.. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012). PubMed

Muellner M. K. et al.. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol. 7, 787–793 (2011). PubMed PMC

Smida M. & Nijman S. M. Functional drug-gene interactions in lung cancer. Expert Rev. Mol. Diagn. 12, 291–302 (2012). PubMed

Lundberg A. S. et al.. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21, 4577–4586 (2002). PubMed

Zabludoff S. D. et al.. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol. Cancer Ther. 7, 2955–2966 (2008). PubMed

Barrett S. D. et al.. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett. 18, 6501–6504 (2008). PubMed

Hatzivassiliou G. et al.. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11, 1143–1154 (2012). PubMed

Mali P. et al.. RNA-guided human genome engineering via Cas9. Science (New York, NY) 339, 823–826 (2013). PubMed PMC

Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). PubMed PMC

Barretina J. et al.. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). PubMed PMC

Garnett M. J. et al.. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012). PubMed PMC

Golding S. E. et al.. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009). PubMed PMC

Carracedo A. et al.. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008). PubMed PMC

Zmajkovicova K. et al.. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol. Cell 50, 43–55 (2013). PubMed PMC

Meng J. et al.. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS ONE 5, e14124 (2010). PubMed PMC

Engelman J. A. et al.. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008). PubMed PMC

Gutierrez-Enriquez S. et al.. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer 40, 109–119 (2004). PubMed

Rudd M. F., Sellick G. S., Webb E. L., Catovsky D. & Houlston R. S. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood 108, 638–644 (2006). PubMed

Shimizu T. et al.. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res. 18, 2316–2325 (2012). PubMed

George S. et al.. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004). PubMed PMC

Cho H. et al.. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001). PubMed

Bar R. S. et al.. Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors. N. Engl. J. Med. 298, 1164–1171 (1978). PubMed

Viniegra J. G. et al.. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J. Biol. Chem. 280, 4029–4036 (2005). PubMed

Stagni V. et al.. ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat. Commun. 6, 6886 (2015). PubMed

Chen J. H. et al.. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11, 239–252 (2015). PubMed PMC

Yang D. Q. & Kastan M. B. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat. Cell. Biol. 2, 893–898 (2000). PubMed

Zhang J. et al.. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell. Biol. 17, 1259–1269 (2015). PubMed PMC

Alexander A. et al.. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010). PubMed PMC

Tripathi D. N. et al.. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013). PubMed PMC

Sullivan K. D., Palaniappan V. V. & Espinosa J. M. ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle 14, 56–63 (2015). PubMed PMC

Zou Y., Wang Q., Li B., Xie B. & Wang W. Temozolomide induces autophagy via ATMAMPKULK1 pathways in glioma. Mol. Med. Rep. 10, 411–416 (2014). PubMed

Krohn N. G. et al.. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response. G3 (Bethesda) 4, 49–62 (2014). PubMed PMC

Valentin-Vega Y. A. & Kastan M. B. A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy 8, 840–841 (2012). PubMed PMC

Mao J. H. et al.. Atm heterozygosity does not increase tumor susceptibility to ionizing radiation alone or in a p53 heterozygous background. Oncogene 27, 6596–6600 (2008). PubMed

Bakkenist C. J. & Kastan M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). PubMed

Yamamoto K. et al.. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J. Cell Biol. 198, 305–313 (2012). PubMed PMC

Daniel J. A. et al.. Loss of ATM kinase activity leads to embryonic lethality in mice. J. Cell Biol. 198, 295–304 (2012). PubMed PMC

Choi S., Gamper A. M., White J. S. & Bakkenist C. J. Inhibition of ATM kinase activity does not phenocopy ATM protein disruption: implications for the clinical utility of ATM kinase inhibitors. Cell Cycle 9, 4052–4057 (2010). PubMed PMC

Stankovic T. et al.. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62, 334–345 (1998). PubMed PMC

Spring K. et al.. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 32, 185–190 (2002). PubMed

Scott S. P. et al.. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc Natl Acad Sci USA 99, 925–930 (2002). PubMed PMC

Chenevix-Trench G. et al.. Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst. 94, 205–215 (2002). PubMed

Williamson C. T. et al.. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol. Cancer Ther. 9, 347–357 (2010). PubMed PMC

Weston V. J. et al.. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116, 4578–4587 (2010). PubMed

McCabe N. et al.. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006). PubMed

Reaper P. M. et al.. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011). PubMed

Muellner M. K. et al.. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens. BMC Bioinformatics 15, 98 (2014). PubMed PMC

DiCarlo J. E. et al.. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...