MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 24766
Austrian Science Fund FWF - Austria
PubMed
27922010
PubMed Central
PMC5150652
DOI
10.1038/ncomms13701
PII: ncomms13701
Knihovny.cz E-zdroje
- MeSH
- ATM protein genetika metabolismus MeSH
- benzamidy farmakologie MeSH
- difenylamin analogy a deriváty farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- močovina analogy a deriváty farmakologie MeSH
- mutace * MeSH
- myši nahé MeSH
- nádorové buněčné linie MeSH
- nádory plic genetika metabolismus prevence a kontrola MeSH
- proliferace buněk účinky léků genetika MeSH
- protoonkogenní proteiny B-Raf genetika metabolismus MeSH
- pyridony farmakologie MeSH
- pyrimidinony farmakologie MeSH
- Ras proteiny genetika metabolismus MeSH
- RNA interference MeSH
- thiofeny farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-(carbamoylamino)-5-(3-fluorophenyl)-N-(3-piperidyl)thiophene-2-carboxamide MeSH Prohlížeč
- ATM protein MeSH
- benzamidy MeSH
- BRAF protein, human MeSH Prohlížeč
- difenylamin MeSH
- inhibitory proteinkinas MeSH
- mirdametinib MeSH Prohlížeč
- močovina MeSH
- protoonkogenní proteiny B-Raf MeSH
- pyridony MeSH
- pyrimidinony MeSH
- Ras proteiny MeSH
- thiofeny MeSH
- trametinib MeSH Prohlížeč
Lung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib. Lung cancer cells resistant to MEK inhibition become highly sensitive upon loss of ATM both in vitro and in vivo. Mechanistically, ATM mediates crosstalk between the prosurvival MEK/ERK and AKT/mTOR pathways. ATM loss also enhances the sensitivity of KRAS- or BRAF-mutant lung cancer cells to MEK inhibition. Thus, ATM mutational status in lung cancer is a mechanistic biomarker for MEK inhibitor response, which may improve patient stratification and extend the applicability of these drugs beyond RAS and BRAF mutant tumours.
Academy of Sciences of the Czech Republic Institute of Biophysics 61200 Brno Czech Republic
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Champions Oncology Hackensack New Jersey 07601 USA
Clinical Institute of Pathology Medical University of Vienna 1090 Vienna Austria
Institute of Pharmacology and Toxicology University of Veterinary Medicine 1210 Vienna Austria
Nuffield Department of Medicine Target Discovery Institute University of Oxford OX3 7FZ Oxford UK
Research Center for Molecular Medicine of the Austrian Academy of Sciences 1090 Vienna Austria
Zobrazit více v PubMed
Marshall E. Cancer research and the $90 billion metaphor. Science 331, 1540–1541 (2011). PubMed
Imielinski M. et al.. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012). PubMed PMC
Govindan R. et al.. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012). PubMed PMC
Cancer Genome Atlas Research, N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014). PubMed PMC
Ding L. et al.. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008). PubMed PMC
Lynch T. J. et al.. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004). PubMed
Shaw A. T. et al.. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013). PubMed
Drilon A. et al.. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013). PubMed PMC
Nijman S. M. & Friend S. H. Cancer. Potential of the synthetic lethality principle. Science 342, 809–811 (2013). PubMed
Shiloh Y. & Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013). PubMed
Ahmed M. & Rahman N. ATM and breast cancer susceptibility. Oncogene 25, 5906–5911 (2006). PubMed
Cancer Genome Atlas Research, N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014). PubMed PMC
Biankin A. V. et al.. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012). PubMed PMC
Blumenschein G. R. Jr. et al.. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)dagger. Ann. Oncol. 26, 894–901 (2015). PubMed PMC
Flaherty K. T. et al.. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012). PubMed
Muellner M. K. et al.. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat. Chem. Biol. 7, 787–793 (2011). PubMed PMC
Smida M. & Nijman S. M. Functional drug-gene interactions in lung cancer. Expert Rev. Mol. Diagn. 12, 291–302 (2012). PubMed
Lundberg A. S. et al.. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21, 4577–4586 (2002). PubMed
Zabludoff S. D. et al.. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol. Cancer Ther. 7, 2955–2966 (2008). PubMed
Barrett S. D. et al.. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett. 18, 6501–6504 (2008). PubMed
Hatzivassiliou G. et al.. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 11, 1143–1154 (2012). PubMed
Mali P. et al.. RNA-guided human genome engineering via Cas9. Science (New York, NY) 339, 823–826 (2013). PubMed PMC
Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). PubMed PMC
Barretina J. et al.. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). PubMed PMC
Garnett M. J. et al.. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012). PubMed PMC
Golding S. E. et al.. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009). PubMed PMC
Carracedo A. et al.. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008). PubMed PMC
Zmajkovicova K. et al.. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol. Cell 50, 43–55 (2013). PubMed PMC
Meng J. et al.. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS ONE 5, e14124 (2010). PubMed PMC
Engelman J. A. et al.. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008). PubMed PMC
Gutierrez-Enriquez S. et al.. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer 40, 109–119 (2004). PubMed
Rudd M. F., Sellick G. S., Webb E. L., Catovsky D. & Houlston R. S. Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia. Blood 108, 638–644 (2006). PubMed
Shimizu T. et al.. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res. 18, 2316–2325 (2012). PubMed
George S. et al.. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004). PubMed PMC
Cho H. et al.. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728–1731 (2001). PubMed
Bar R. S. et al.. Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors. N. Engl. J. Med. 298, 1164–1171 (1978). PubMed
Viniegra J. G. et al.. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J. Biol. Chem. 280, 4029–4036 (2005). PubMed
Stagni V. et al.. ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat. Commun. 6, 6886 (2015). PubMed
Chen J. H. et al.. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11, 239–252 (2015). PubMed PMC
Yang D. Q. & Kastan M. B. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat. Cell. Biol. 2, 893–898 (2000). PubMed
Zhang J. et al.. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell. Biol. 17, 1259–1269 (2015). PubMed PMC
Alexander A. et al.. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010). PubMed PMC
Tripathi D. N. et al.. Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013). PubMed PMC
Sullivan K. D., Palaniappan V. V. & Espinosa J. M. ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle 14, 56–63 (2015). PubMed PMC
Zou Y., Wang Q., Li B., Xie B. & Wang W. Temozolomide induces autophagy via ATMAMPKULK1 pathways in glioma. Mol. Med. Rep. 10, 411–416 (2014). PubMed
Krohn N. G. et al.. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response. G3 (Bethesda) 4, 49–62 (2014). PubMed PMC
Valentin-Vega Y. A. & Kastan M. B. A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy 8, 840–841 (2012). PubMed PMC
Mao J. H. et al.. Atm heterozygosity does not increase tumor susceptibility to ionizing radiation alone or in a p53 heterozygous background. Oncogene 27, 6596–6600 (2008). PubMed
Bakkenist C. J. & Kastan M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003). PubMed
Yamamoto K. et al.. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J. Cell Biol. 198, 305–313 (2012). PubMed PMC
Daniel J. A. et al.. Loss of ATM kinase activity leads to embryonic lethality in mice. J. Cell Biol. 198, 295–304 (2012). PubMed PMC
Choi S., Gamper A. M., White J. S. & Bakkenist C. J. Inhibition of ATM kinase activity does not phenocopy ATM protein disruption: implications for the clinical utility of ATM kinase inhibitors. Cell Cycle 9, 4052–4057 (2010). PubMed PMC
Stankovic T. et al.. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet. 62, 334–345 (1998). PubMed PMC
Spring K. et al.. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat. Genet. 32, 185–190 (2002). PubMed
Scott S. P. et al.. Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc Natl Acad Sci USA 99, 925–930 (2002). PubMed PMC
Chenevix-Trench G. et al.. Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst. 94, 205–215 (2002). PubMed
Williamson C. T. et al.. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol. Cancer Ther. 9, 347–357 (2010). PubMed PMC
Weston V. J. et al.. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116, 4578–4587 (2010). PubMed
McCabe N. et al.. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006). PubMed
Reaper P. M. et al.. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011). PubMed
Muellner M. K. et al.. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens. BMC Bioinformatics 15, 98 (2014). PubMed PMC
DiCarlo J. E. et al.. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013). PubMed PMC