Atomic Scale Engineering of Multivalence-State Palladium Photocatalyst for Transfer Hydrogenation with Water as a Proton Source
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
2023YFD2200505
National Key Research and Development Program of China
22202105 22205113
National Natural Science Foundation of China
2022M711645
China Postdoctoral Science Foundation
KYCX23_1166
Postgraduate Research & Practice Innovation Program of Jiangsu Province
CZ.02.01.01/00/22_008/0004587
European Regional Development Fund
21KJA150003
Natural Science Research of Jiangsu Higher Education Institutions of China
21KJB150027
Natural Science Research of Jiangsu Higher Education Institutions of China
CZ.10.03.01/00/22_003/0000048
Ministerstvo Životního Prostředí
PubMed
40401412
PubMed Central
PMC12355530
DOI
10.1002/adma.202504108
Knihovny.cz E-resources
- Keywords
- carbon nitride, hydride transfer, palladium, photocatalysis, selective hydrogenation,
- Publication type
- Journal Article MeSH
Hydrogenation reactions are fundamental in the fine chemical, pharmaceutical, and petrochemical industries, however heavily relying on H2 gas at high temperatures and pressures, incurring large energy and carbon costs. Photocatalytic transfer hydrogenation, using water as a proton source, offers a greener alternative, but existing photocatalysts often suffer from modest yields, limited selectivity, and narrow substrate scope. Additionally, they often require co-activation, such as Mg-activated water or non-sustainable hydrogen feeds. Here, a photocatalyst is introduced that offers high yields and selectivities across a broad spectrum of organic compounds. The developed photocatalyst is a multivalence palladium superstructure with ultrasmall Pd0 nanoparticles enveloped by isolated Pd2+/Pd4+ atoms within a carbon-nitride matrix. Mechanistic studies reveal that the redox-flexible Pd single atoms, with triethylamine as an electronic modulator, attract photogenerated holes for water oxidation, while Pd0 nanoparticles facilitate hydrogen transfer to the unsaturated bonds of the organic molecules. The cooperative and dynamic behavior of Pd centers during catalysis, involving transitions among Pd+2, Pd+3, and Pd+4 states, is validated using operando electron paramagnetic resonance spectroscopy. This multivalent palladium catalyst represents a conceptual advance in photocatalytic transfer hydrogenation with water as a hydrogen source, holding promise for sustainable hydrogenation processes in the chemical industry.
Leibniz Institute for Catalysis Albert Einstein Straβe 29a 18059 Rostock Germany
School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P R China
See more in PubMed
Luneau M., Lim J. S., Patel D. A., Sykes E. C. H., Friend C. M., Sautet P., Chem. Rev. 2020, 120, 12834. PubMed
Wang X., Liang X., Geng P., Li Q., ACS Catal. 2020, 10, 2395.
Arcudi F., Ethordevic L., Schweitzer N., Stupp S. I., Weiss E. A., Nat. Chem. 2022, 14, 1007. PubMed
Biosca M., Diéguez M., Zanotti‐Gerosa A., Adv. Catal. 2021, 68, 341.
Stoffels M. A., Klauck F. J. R., Hamadi T., Glorius F., Leker J., Adv. Synth. Catal. 2020, 362, 1258. PubMed PMC
Zhao D., Li X., Zhang K., Guo J., Huang X., Wang G., Coord. Chem. Rev. 2023, 487, 215159.
Zhang L., Zhou M., Wang A., Zhang T., Chem. Rev. 2019, 120, 683. PubMed
Wang D., Astruc D., Chem. Rev. 2015, 115, 6621. PubMed
Wu D., Baaziz W., Gu B., Marinova M., Hernández W. Y., Zhou W., Vovk E. I., Ersen O., Safonova O. V., Addad A., Nuns N., Khodakov A. Y., Ordomsky V. V., Nat. Catal. 2021, 4, 595.
Zhao M., Yuan K., Wang Y., Li G., Guo J., Gu L., Hu W., Zhao H., Tang Z., Nature 2016, 539, 76. PubMed
Sheldon R. A., Woodley J. M., Chem. Rev. 2018, 118, 801. PubMed
Kar S., Sanderson H., Roy K., Benfenati E., Leszczynski J., Chem. Rev. 2022, 122, 3637. PubMed
Poulose A. C., Zoppellaro G., Konidakis I., Serpetzoglou E., Stratakis E., Tomanec O., Beller M., Bakandritsos A., Zbořil R., Nat. Nanotechnol. 2022, 17, 485. PubMed PMC
Chandrashekhar V. G., Senthamarai T., Kadam R. G., Malina O., Kašlík J., Zbořil R., Gawande M. B., Jagadeesh R. V., Beller M., Nat. Catal. 2022, 5, 20.
Obata K., Schwarze M., Thiel T. A., Zhang X., Radhakrishnan B., Ahmet I. Y., van de Krol R., Schomäcker R., Abdi F. F., Nat. Commun. 2023, 14, 6017. PubMed PMC
Lee K., Jing Y., Wang Y., Yan N., Nat. Rev. Chem. 2022, 6, 635. PubMed PMC
Poulose A. C., Medveď M., Bakuru V. R., Sharma A., Singh D., Kalidindi S. B., Bares H., Otyepka M., Jayaramulu K., Bakandritsos A., Zbořil R., Nat. Commun. 2023, 14, 1373. PubMed PMC
Nie R., Tao Y., Nie Y., Lu T., Wang J., Zhang Y., Lu X., Xu C. C., ACS Catal. 2021, 11, 1071.
Yang H., Cui X., Dai X., Deng Y., Shi F., Nat. Commun. 2015, 6, 6478. PubMed
Sharma D., Choudhary P., Mittal P., Kumar S., Gouda A., Krishnan V., ACS Catal. 2024, 14, 4211.
Wakizaka M., Matsumoto T., Tanaka R., Chang H.‐C., Nat. Commun. 2016, 7, 12333. PubMed PMC
Xu C., Paon E., Rodríguez‐Padrón D., Luque R., Mauriello F., Chem. Soc. Rev. 2020, 49, 4273. PubMed
Hill C. K., Hartwig J. F., Nat. Chem. 2017, 9, 1213. PubMed PMC
Zhao E., Li M., Xu B., Wang X. L., Jing Y., Ma D., Mitchell S., Pérez‐Ramírez J., Chen Z., Angew. Chem., Int. Ed. 2022, 61, 202207410. PubMed
Wang T., Xin Y., Chen B., Zhang B., Luan S., Dong M., Wu Y., Cheng X., Liu Y., Liu H., Han B., Nat. Commun. 2024, 15, 2166. PubMed PMC
Liu C., Chen F., Zhao B.‐H., Wu Y., Zhang B., Nat. Rev. Chem. 2024, 8, 277. PubMed
Hao C. H., Guo X. N., Pan Y. T., Chen S., Jiao Z. F., Yang H., Guo X. Y., J. Am. Chem. Soc. 2016, 138, 9361. PubMed
Wang H., Shi Y., Wang Z., Song Y., Shen M., Guo B., Wu L., J. Catal. 2021, 396, 374.
Sharma P., Sasson Y., Green Chem. 2019, 21, 261.
Wang X., Maeda K., Chen X., Takanabe K., Domen K., Hou Y., Fu X., Antonietti M., J. Am. Chem. Soc. 2009, 131, 1680. PubMed
Goettmann F., Fischer A., Antonietti M., Thomas A., Angew. Chem., Int. Ed. 2006, 45, 4467. PubMed
Kim T. W., Choi K.‐S., Science 2014, 343, 990. PubMed
Risse T., Hollmann D., Brückner A., Catalysis 2015, 27, 1.
Hu C., Zhang Y., Hu A., Wang Y., Wei X., Shen K., Chen L., Li Y., Adv. Mater. 2023, 35, 2209298. PubMed
Bennati M., in EPR Spectroscopy: Fundamentals and Methods, (Eds: Goldfarb D., Stoll S.), Wiley, New York/Chichester, UK: 2018, pp. 81–94.
Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature 2020, 581, 411. PubMed