• This record comes from PubMed

Atomic Scale Engineering of Multivalence-State Palladium Photocatalyst for Transfer Hydrogenation with Water as a Proton Source

. 2025 May 22 ; () : e2504108. [epub] 20250522

Status Publisher Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
2023YFD2200505 National Key Research and Development Program of China
22202105 22205113 National Natural Science Foundation of China
2022M711645 China Postdoctoral Science Foundation
KYCX23_1166 Postgraduate Research & Practice Innovation Program of Jiangsu Province
CZ.02.01.01/00/22_008/0004587 European Regional Development Fund
21KJA150003 Natural Science Research of Jiangsu Higher Education Institutions of China
21KJB150027 Natural Science Research of Jiangsu Higher Education Institutions of China
CZ.10.03.01/00/22_003/0000048 Ministerstvo Životního Prostředí

Hydrogenation reactions are fundamental in the fine chemical, pharmaceutical, and petrochemical industries, however heavily relying on H2 gas at high temperatures and pressures, incurring large energy and carbon costs. Photocatalytic transfer hydrogenation, using water as a proton source, offers a greener alternative, but existing photocatalysts often suffer from modest yields, limited selectivity, and narrow substrate scope. Additionally, they often require co-activation, such as Mg-activated water or non-sustainable hydrogen feeds. Here, a photocatalyst is introduced that offers high yields and selectivities across a broad spectrum of organic compounds. The developed photocatalyst is a multivalence palladium superstructure with ultrasmall Pd0 nanoparticles enveloped by isolated Pd2+/Pd4+ atoms within a carbon-nitride matrix. Mechanistic studies reveal that the redox-flexible Pd single atoms, with triethylamine as an electronic modulator, attract photogenerated holes for water oxidation, while Pd0 nanoparticles facilitate hydrogen transfer to the unsaturated bonds of the organic molecules. The cooperative and dynamic behavior of Pd centers during catalysis, involving transitions among Pd+2, Pd+3, and Pd+4 states, is validated using operando electron paramagnetic resonance spectroscopy. This multivalent palladium catalyst represents a conceptual advance in photocatalytic transfer hydrogenation with water as a hydrogen source, holding promise for sustainable hydrogenation processes in the chemical industry.

See more in PubMed

M. Luneau, J. S. Lim, D. A. Patel, E. C. H. Sykes, C. M. Friend, P. Sautet, Chem. Rev. 2020, 120, 12834.

X. Wang, X. Liang, P. Geng, Q. Li, ACS Catal. 2020, 10, 2395.

F. Arcudi, L. Ethordevic, N. Schweitzer, S. I. Stupp, E. A. Weiss, Nat. Chem. 2022, 14, 1007.

M. Biosca, M. Diéguez, A. Zanotti‐Gerosa, Adv. Catal. 2021, 68, 341.

M. A. Stoffels, F. J. R. Klauck, T. Hamadi, F. Glorius, J. Leker, Adv. Synth. Catal. 2020, 362, 1258.

D. Zhao, X. Li, K. Zhang, J. Guo, X. Huang, G. Wang, Coord. Chem. Rev. 2023, 487, 215159.

L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2019, 120, 683.

D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621.

D. Wu, W. Baaziz, B. Gu, M. Marinova, W. Y. Hernández, W. Zhou, E. I. Vovk, O. Ersen, O. V. Safonova, A. Addad, N. Nuns, A. Y. Khodakov, V. V. Ordomsky, Nat. Catal. 2021, 4, 595.

M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76.

R. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801.

S. Kar, H. Sanderson, K. Roy, E. Benfenati, J. Leszczynski, Chem. Rev. 2022, 122, 3637.

A. C. Poulose, G. Zoppellaro, I. Konidakis, E. Serpetzoglou, E. Stratakis, O. Tomanec, M. Beller, A. Bakandritsos, R. Zbořil, Nat. Nanotechnol. 2022, 17, 485.

V. G. Chandrashekhar, T. Senthamarai, R. G. Kadam, O. Malina, J. Kašlík, R. Zbořil, M. B. Gawande, R. V. Jagadeesh, M. Beller, Nat. Catal. 2022, 5, 20.

K. Obata, M. Schwarze, T. A. Thiel, X. Zhang, B. Radhakrishnan, I. Y. Ahmet, R. van de Krol, R. Schomäcker, F. F. Abdi, Nat. Commun. 2023, 14, 6017.

K. Lee, Y. Jing, Y. Wang, N. Yan, Nat. Rev. Chem. 2022, 6, 635.

A. C. Poulose, M. Medveď, V. R. Bakuru, A. Sharma, D. Singh, S. B. Kalidindi, H. Bares, M. Otyepka, K. Jayaramulu, A. Bakandritsos, R. Zbořil, Nat. Commun. 2023, 14, 1373.

R. Nie, Y. Tao, Y. Nie, T. Lu, J. Wang, Y. Zhang, X. Lu, C. C. Xu, ACS Catal. 2021, 11, 1071.

H. Yang, X. Cui, X. Dai, Y. Deng, F. Shi, Nat. Commun. 2015, 6, 6478.

D. Sharma, P. Choudhary, P. Mittal, S. Kumar, A. Gouda, V. Krishnan, ACS Catal. 2024, 14, 4211.

M. Wakizaka, T. Matsumoto, R. Tanaka, H.‐C. Chang, Nat. Commun. 2016, 7, 12333.

C. Xu, E. Paon, D. Rodríguez‐Padrón, R. Luque, F. Mauriello, Chem. Soc. Rev. 2020, 49, 4273.

C. K. Hill, J. F. Hartwig, Nat. Chem. 2017, 9, 1213.

E. Zhao, M. Li, B. Xu, X. L. Wang, Y. Jing, D. Ma, S. Mitchell, J. Pérez‐Ramírez, Z. Chen, Angew. Chem., Int. Ed. 2022, 61, 202207410.

T. Wang, Y. Xin, B. Chen, B. Zhang, S. Luan, M. Dong, Y. Wu, X. Cheng, Y. Liu, H. Liu, B. Han, Nat. Commun. 2024, 15, 2166.

C. Liu, F. Chen, B.‐H. Zhao, Y. Wu, B. Zhang, Nat. Rev. Chem. 2024, 8, 277.

C. H. Hao, X. N. Guo, Y. T. Pan, S. Chen, Z. F. Jiao, H. Yang, X. Y. Guo, J. Am. Chem. Soc. 2016, 138, 9361.

H. Wang, Y. Shi, Z. Wang, Y. Song, M. Shen, B. Guo, L. Wu, J. Catal. 2021, 396, 374.

P. Sharma, Y. Sasson, Green Chem. 2019, 21, 261.

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680.

F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem., Int. Ed. 2006, 45, 4467.

T. W. Kim, K.‐S. Choi, Science 2014, 343, 990.

T. Risse, D. Hollmann, A. Brückner, Catalysis 2015, 27, 1.

C. Hu, Y. Zhang, A. Hu, Y. Wang, X. Wei, K. Shen, L. Chen, Y. Li, Adv. Mater. 2023, 35, 2209298.

M. Bennati, in EPR Spectroscopy: Fundamentals and Methods, (Eds: D. Goldfarb, S. Stoll), Wiley, New York/Chichester, UK 2018, pp. 81–94.

T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 2020, 581, 411.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...