Folding DNA into origami nanostructures enhances resistance to ionizing radiation

. 2021 Jul 01 ; 13 (25) : 11197-11203.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34142687

We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix. Present results allow estimating the stability of scaffolded DNA origami nanostructures in applications such as nanotechnology, pharmacy or in singulo molecular studies where they are exposed to ionizing radiation from natural and artificial sources. Additionally, possibilities are opened for scaffolded DNA use in the design of radiation-resistant and radio-sensitive materials.

Zobrazit více v PubMed

Jorgensen T. J., Strange Glow: The Story of Radiation, Princeton University Press, Princeton, New Jersey, 2016

Seiwert T. Y. Salama J. K. Vokes E. E. Nat. Rev. Clin. Oncol. 2007;4:86–100. PubMed

Schürmann R. Vogel S. Ebel K. Bald I. Chem. – Eur. J. 2018;24:10271–10279. PubMed

Rackwitz J. Kopyra J. Dabkowska I. Ebel K. Ranković M. L. Milosavljević A. R. Bald I. Angew. Chem., Int. Ed. 2016;55:10248–10252. PubMed

Zhang Q. Jiang Q. Li N. Dai L. Liu Q. Song L. Wang J. Li Y. Tian J. Ding B. Du Y. ACS Nano. 2014;8:6633–6643. PubMed

Zhuang X. Ma X. Xue X. Jiang Q. Song L. Dai L. Zhang C. Jin S. Yang K. Ding B. Wang P. C. Liang X.-J. ACS Nano. 2016;10:3486–3495. PubMed PMC

Bald I. Keller A. Molecules. 2014;19:13803–13823. PubMed PMC

Schürmann R. Tsering T. Tanzer K. Denifl S. Kumar S. V. K. Bald I. Angew. Chem., Int. Ed. 2017;56:10952–10955. PubMed

Udomprasert A. Kangsamaksin T. Cancer Sci. 2017;108:1535–1543. PubMed PMC

Song L. Jiang Q. Liu J. Li N. Liu Q. Dai L. Gao Y. Liu W. Liu D. Ding B. Nanoscale. 2017;9:7750–7754. PubMed

Huang R. He N. Li Z. Biosens. Bioelectron. 2018;109:27–34. PubMed

Keller A. Linko V. Angew. Chem., Int. Ed. 2020;59:15818–15833. PubMed PMC

Li N. Wang X.-Y. Xiang M.-H. Liu J.-W. Yu R.-Q. Jiang J.-H. Anal. Chem. 2019;91:2610–2614. PubMed

Huang X. Blum N. T. Lin J. Shi J. Zhang C. Huang P. Mater. Horiz. 2021;8:78–101. PubMed

Voigt N. V. Tørring T. Rotaru A. Jacobsen M. F. Ravnsbæk J. B. Subramani R. Mamdouh W. Kjems J. Mokhir A. Besenbacher F. Gothelf K. V. Nat. Nanotechnol. 2010;5:200–203. PubMed

Keller A. Bald I. Rotaru A. Cauët E. Gothelf K. V. Besenbacher F. ACS Nano. 2012;6:4392–4399. PubMed

Rajendran A. Endo M. Sugiyama H. Angew. Chem., Int. Ed. 2012;51:874–890. PubMed

Huang D. Patel K. Perez-Garrido S. Marshall J. F. Palma M. ACS Nano. 2019;13:728–736. PubMed

Seeman N. C. Nat. Rev. 2017;3:17068.

Hong F. Zhang F. Liu Y. Yan H. Chem. Rev. 2017;117:12584–12640. PubMed

Cleland M. Parks L. Cheng S. Nucl. Instrum. Methods Phys. Res., Sect. B. 2003;208:66–73.

Advances in Radiation Biology, ed. J. T. Lett and W. K. Sinclair, Elsevier, 1993, vol. 17, pp. 121–180

Leloup C. Garty G. Assaf G. Cristovão A. Breskin A. Chechik R. Shchemelinin S. Paz-Elizur T. Livneh Z. Schulte R. Bashkirov V. Milligan J. Grosswendt B. Int. J. Radiat. Biol. 2005;81:41–54. PubMed

Dang H. M. van Goethem M. J. van der Graaf E. R. Brandenburg S. Hoekstra R. Schlathölter T. Eur. Phys. J. D. 2011;63:359.

Vyšín L. Pachnerová Brabcová K. Štěpán V. Moretto-Capelle P. Bugler B. Legube G. Cafarelli P. Casta R. Champeaux J. P. Sence M. Vlk M. Wagner R. Štursa J. Zach V. Incerti S. Juha L. Davídková M. Radiat. Environ. Biophys. 2015;54:343–352. PubMed

Sahbani S. K. Girouard S. Cloutier P. Sanche L. Hunting D. J. Radiat. Res. 2014;181:99–110. PubMed

Vogel S. Ebel K. Schürmann R. M. Heck C. Meiling T. Milosavljevic A. R. Giuliani A. Bald I. ChemPhysChem. 2019;20:823–830. PubMed

Fang W. Xie M. Hou X. Liu X. Zuo X. Chao J. Wang L. Fan C. Liu H. Wang L. J. Am. Chem. Soc. 2020;142:8782–8789. PubMed

Chen H. Li R. Li S. Andréasson J. Choi J. H. J. Am. Chem. Soc. 2017;139:1380–1383. PubMed

Rothemund P. W. K. Nature. 2006;440:297–302. PubMed

Hung A. M. Micheel C. M. Bozano L. D. Osterbur L. W. Wallraff G. M. Cha J. N. Nat. Nanotechnol. 2010;5:121–126. PubMed

Jiang Q. Song C. Nangreave J. Liu X. Lin L. Qiu D. Wang Z.-G. Zou G. Liang X. Yan H. Ding B. J. Am. Chem. Soc. 2012;134:13396–13403. PubMed

Prinz J. Heck C. Ellerik L. Merk V. Bald I. Nanoscale. 2016;8:5612–5620. PubMed PMC

Kielar C. Xin Y. Xu X. Zhu S. Gorin N. Grundmeier G. Möser C. Smith D. M. Keller A. Molecules. 2019;24:2577–2588. PubMed PMC

Kielar C. Xin Y. Shen B. Kostiainen M. A. Grundmeier G. Linko V. Keller A. Angew. Chem., Int. Ed. 2018;57:9470–9474. PubMed

von Sonntag C., The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987

Goodhead D. Int. J. Radiat. Biol. 1994;65:7–17. PubMed

Yokoya A. Cunniffe S. M. T. O'Neill P. J. Am. Chem. Soc. 2002;124:8859–8866. PubMed

Paganetti H. Phys. Med. Biol. 2014;59:R419–R472. PubMed

Buxton G. V. Greenstock C. L. Helman W. P. Ross A. B. J. Phys. Chem. Ref. Data. 1988;513:8859–8866.

Cowan R. Collis C. M. Grigg G. W. J. Theor. Biol. 1987;127:229–245. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...