Folding DNA into origami nanostructures enhances resistance to ionizing radiation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
34142687
PubMed Central
PMC8247635
DOI
10.1039/d1nr02013g
Knihovny.cz E-zdroje
- MeSH
- DNA MeSH
- ionizující záření MeSH
- konformace nukleové kyseliny MeSH
- nanostruktury * MeSH
- nanotechnologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix. Present results allow estimating the stability of scaffolded DNA origami nanostructures in applications such as nanotechnology, pharmacy or in singulo molecular studies where they are exposed to ionizing radiation from natural and artificial sources. Additionally, possibilities are opened for scaffolded DNA use in the design of radiation-resistant and radio-sensitive materials.
Zobrazit více v PubMed
Jorgensen T. J., Strange Glow: The Story of Radiation, Princeton University Press, Princeton, New Jersey, 2016
Seiwert T. Y. Salama J. K. Vokes E. E. Nat. Rev. Clin. Oncol. 2007;4:86–100. PubMed
Schürmann R. Vogel S. Ebel K. Bald I. Chem. – Eur. J. 2018;24:10271–10279. PubMed
Rackwitz J. Kopyra J. Dabkowska I. Ebel K. Ranković M. L. Milosavljević A. R. Bald I. Angew. Chem., Int. Ed. 2016;55:10248–10252. PubMed
Zhang Q. Jiang Q. Li N. Dai L. Liu Q. Song L. Wang J. Li Y. Tian J. Ding B. Du Y. ACS Nano. 2014;8:6633–6643. PubMed
Zhuang X. Ma X. Xue X. Jiang Q. Song L. Dai L. Zhang C. Jin S. Yang K. Ding B. Wang P. C. Liang X.-J. ACS Nano. 2016;10:3486–3495. PubMed PMC
Bald I. Keller A. Molecules. 2014;19:13803–13823. PubMed PMC
Schürmann R. Tsering T. Tanzer K. Denifl S. Kumar S. V. K. Bald I. Angew. Chem., Int. Ed. 2017;56:10952–10955. PubMed
Udomprasert A. Kangsamaksin T. Cancer Sci. 2017;108:1535–1543. PubMed PMC
Song L. Jiang Q. Liu J. Li N. Liu Q. Dai L. Gao Y. Liu W. Liu D. Ding B. Nanoscale. 2017;9:7750–7754. PubMed
Huang R. He N. Li Z. Biosens. Bioelectron. 2018;109:27–34. PubMed
Keller A. Linko V. Angew. Chem., Int. Ed. 2020;59:15818–15833. PubMed PMC
Li N. Wang X.-Y. Xiang M.-H. Liu J.-W. Yu R.-Q. Jiang J.-H. Anal. Chem. 2019;91:2610–2614. PubMed
Huang X. Blum N. T. Lin J. Shi J. Zhang C. Huang P. Mater. Horiz. 2021;8:78–101. PubMed
Voigt N. V. Tørring T. Rotaru A. Jacobsen M. F. Ravnsbæk J. B. Subramani R. Mamdouh W. Kjems J. Mokhir A. Besenbacher F. Gothelf K. V. Nat. Nanotechnol. 2010;5:200–203. PubMed
Keller A. Bald I. Rotaru A. Cauët E. Gothelf K. V. Besenbacher F. ACS Nano. 2012;6:4392–4399. PubMed
Rajendran A. Endo M. Sugiyama H. Angew. Chem., Int. Ed. 2012;51:874–890. PubMed
Huang D. Patel K. Perez-Garrido S. Marshall J. F. Palma M. ACS Nano. 2019;13:728–736. PubMed
Seeman N. C. Nat. Rev. 2017;3:17068.
Hong F. Zhang F. Liu Y. Yan H. Chem. Rev. 2017;117:12584–12640. PubMed
Cleland M. Parks L. Cheng S. Nucl. Instrum. Methods Phys. Res., Sect. B. 2003;208:66–73.
Advances in Radiation Biology, ed. J. T. Lett and W. K. Sinclair, Elsevier, 1993, vol. 17, pp. 121–180
Leloup C. Garty G. Assaf G. Cristovão A. Breskin A. Chechik R. Shchemelinin S. Paz-Elizur T. Livneh Z. Schulte R. Bashkirov V. Milligan J. Grosswendt B. Int. J. Radiat. Biol. 2005;81:41–54. PubMed
Dang H. M. van Goethem M. J. van der Graaf E. R. Brandenburg S. Hoekstra R. Schlathölter T. Eur. Phys. J. D. 2011;63:359.
Vyšín L. Pachnerová Brabcová K. Štěpán V. Moretto-Capelle P. Bugler B. Legube G. Cafarelli P. Casta R. Champeaux J. P. Sence M. Vlk M. Wagner R. Štursa J. Zach V. Incerti S. Juha L. Davídková M. Radiat. Environ. Biophys. 2015;54:343–352. PubMed
Sahbani S. K. Girouard S. Cloutier P. Sanche L. Hunting D. J. Radiat. Res. 2014;181:99–110. PubMed
Vogel S. Ebel K. Schürmann R. M. Heck C. Meiling T. Milosavljevic A. R. Giuliani A. Bald I. ChemPhysChem. 2019;20:823–830. PubMed
Fang W. Xie M. Hou X. Liu X. Zuo X. Chao J. Wang L. Fan C. Liu H. Wang L. J. Am. Chem. Soc. 2020;142:8782–8789. PubMed
Chen H. Li R. Li S. Andréasson J. Choi J. H. J. Am. Chem. Soc. 2017;139:1380–1383. PubMed
Rothemund P. W. K. Nature. 2006;440:297–302. PubMed
Hung A. M. Micheel C. M. Bozano L. D. Osterbur L. W. Wallraff G. M. Cha J. N. Nat. Nanotechnol. 2010;5:121–126. PubMed
Jiang Q. Song C. Nangreave J. Liu X. Lin L. Qiu D. Wang Z.-G. Zou G. Liang X. Yan H. Ding B. J. Am. Chem. Soc. 2012;134:13396–13403. PubMed
Prinz J. Heck C. Ellerik L. Merk V. Bald I. Nanoscale. 2016;8:5612–5620. PubMed PMC
Kielar C. Xin Y. Xu X. Zhu S. Gorin N. Grundmeier G. Möser C. Smith D. M. Keller A. Molecules. 2019;24:2577–2588. PubMed PMC
Kielar C. Xin Y. Shen B. Kostiainen M. A. Grundmeier G. Linko V. Keller A. Angew. Chem., Int. Ed. 2018;57:9470–9474. PubMed
von Sonntag C., The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987
Goodhead D. Int. J. Radiat. Biol. 1994;65:7–17. PubMed
Yokoya A. Cunniffe S. M. T. O'Neill P. J. Am. Chem. Soc. 2002;124:8859–8866. PubMed
Paganetti H. Phys. Med. Biol. 2014;59:R419–R472. PubMed
Buxton G. V. Greenstock C. L. Helman W. P. Ross A. B. J. Phys. Chem. Ref. Data. 1988;513:8859–8866.
Cowan R. Collis C. M. Grigg G. W. J. Theor. Biol. 1987;127:229–245. PubMed
Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Ion beam processing of DNA origami nanostructures