Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2'-Deoxy-2'-fluorocytidine Observed on DNA Origami Nanoframe Supports
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35472278
PubMed Central
PMC9083549
DOI
10.1021/acs.jpclett.2c00584
Knihovny.cz E-zdroje
- MeSH
- adenosin analogy a deriváty MeSH
- deoxycytidin analogy a deriváty MeSH
- DNA * účinky záření MeSH
- oprava DNA * MeSH
- poškození DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2'-fluoro-2'-deoxycytidine MeSH Prohlížeč
- 8-bromoadenosine MeSH Prohlížeč
- adenosin MeSH
- deoxycytidin MeSH
- DNA * MeSH
DNA origami nanoframes with two parallel DNA sequences are used to evaluate the effect of nucleoside substituents on radiation-induced DNA damage. Double strand breaks (DSB) of DNA are counted using atomic force microscopy (AFM), and total number of lesions is evaluated using real-time polymerase chain reaction (RT-PCR). Enhanced AT or GC content does not increase the number of DNA strand breaks. Incorporation of 8-bromoadenosine results in the highest enhancement in total number of lesions; however, the highest enhancement in DSB is observed for 2'-deoxy-2'-fluorocytidine, indicating different mechanisms of radiosensitization by nucleoside analogues with the halogen substituent on base or sugar moieties, respectively. "Bystander" effects are observed, when the number of DSB in a sequence is enhanced by a substituent in the parallel DNA sequence. The present approach eliminates limitations of previously developed methods and motivates detailed studies of poorly understood conformation or bystander effects in radiation induced damage to DNA.
J Heyrovský Institute of Physical Chemistry of CAS Dolejškova 3 18223 Prague Czech Republic
Nuclear Physics Institute of the CAS Řež 130 250 68 Řež Czech Republic
Zobrazit více v PubMed
Huang R.-X.; Zhou P.-K. DNA Damage Response Signaling Pathways and Targets for Radiotherapy Sensitization in Cancer. Signal Transduct. Target. Ther. 2020, 5, 60.10.1038/s41392-020-0150-x. PubMed DOI PMC
Seiwert T. Y.; Salama J. K.; Vokes E. E. The Concurrent Chemoradiation Paradigm—General Principles. Nat. Clin. Pract. Oncol. 2007, 4, 86–100. 10.1038/ncponc0714. PubMed DOI
Alizadeh E.; Orlando T. M.; Sanche L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379–398. 10.1146/annurev-physchem-040513-103605. PubMed DOI
Huwaidi A.; Kumari B.; Robert G.; Guérin B.; Sanche L.; Wagner J. R. Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles. J. Phys. Chem. Lett. 2021, 12, 9947–9954. 10.1021/acs.jpclett.1c02598. PubMed DOI
Śmiałek M. A.; Moore S. A.; Mason N. J.; Shuker D. E. G. Quantification of Radiation-Induced Single-Strand Breaks in Plasmid DNA using a TUNEL/ELISA-Based Assay. Radiat. Res. 2009, 172, 529–536. 10.1667/RR1684.1. PubMed DOI
Pachnerová Brabcová K.; Sihver L.; Ukraintsev E.; Štěpán V.; Davídková M. How Detection of Plasmid DNA Fragmentation Affects Radiation Strand Break Yields. Radiat. Prot. Dosim. 2019, 183, 89–92. 10.1093/rpd/ncy222. PubMed DOI
Gao Y.; Zheng Y.; Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int. J. Mol. Sci. 2021, 22, 7879.10.3390/ijms22157879. PubMed DOI PMC
Dong Y.; Gao Y.; Liu W.; Gao T.; Zheng Y.; Sanche L. Clustered DNA Damage Induced by 2–20 eV Electrons and Transient Anions: General Mechanism and Correlation to Cell Death. J. Phys. Chem. Lett. 2019, 10, 2985–2990. 10.1021/acs.jpclett.9b01063. PubMed DOI
Schlatholter; Lacombe S.; Eustache P.; Porcel E.; Salado D.; Stefancikova L.; Tillement O.; Lux F.; Mowat P.; van Goethem M.-J.; Remita H.; Biegun A.; et al. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int. J. Nanomedicine 2016, 11, 1549–1556. 10.2147/IJN.S99410. PubMed DOI PMC
Rezaee M.; Sanche L.; Hunting D. J. Cisplatin Enhances the Formation of DNA Single- and Double-Strand Breaks by Hydrated Electrons and Hydroxyl Radicals. Radiat. Res. 2013, 179, 323–331. 10.1667/RR3185.1. PubMed DOI
Reimitz D.; Davídková M.; Mestek O.; Pinkas J.; Kočišek J. Radiomodifying effects of RAPTA C and CDDP on DNA strand break induction. Radiat. Phys. Chem. 2017, 141, 229–234. 10.1016/j.radphyschem.2017.07.015. DOI
Hahn M. B.; Meyer S.; Schröter M.-A.; Seitz H.; Kunte H.-J.; Solomun T.; Sturm H. Direct Electron Irradiation of DNA in a Fully Aqueous Environment. Damage Determination in Combination with Monte Carlo Simulations. Phys. Chem. Chem. Phys. 2017, 19, 1798–1805. 10.1039/C6CP07707B. PubMed DOI
Ribar A.; Huber S. E.; Śmiałek M. A.; Tanzer K.; Neustetter M.; Schürmann R.; Bald I.; Denifl S. Hydroperoxyl Radical and Formic Acid Formation from Common DNA Stabilizers upon Low Energy Electron Attachment. Phys. Chem. Chem. Phys. 2018, 20, 5578–5585. 10.1039/C7CP07697E. PubMed DOI
Balasubramanian B.; Pogozelski W. K.; Tullius T. D. DNA Strand Breaking by the Hydroxyl Radical is Governed by the Accessible Surface Areas of the Hydrogen Atoms of the DNA Backbone. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 9738–9743. 10.1073/pnas.95.17.9738. PubMed DOI PMC
Solomun T.; Hultschig C.; Illenberger E. Microarray Technology for the Study of DNA Damage by Low-Energy Electrons. Eur. Phys. J. D 2005, 35, 437–441. 10.1140/epjd/e2005-00204-8. DOI
Schürmann R.; Vogel S.; Ebel K.; Bald I. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. Eur. J. 2018, 24, 10271–10279. 10.1002/chem.201800804. PubMed DOI
Li Z.; Cloutier P.; Sanche L.; Wagner J. R. Low-Energy Electron-Induced DNA Damage: Effect of Base Sequence in Oligonucleotide Trimers. J. Am. Chem. Soc. 2010, 132, 5422–5427. 10.1021/ja9099505. PubMed DOI
Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; et al. DNA Origami. Nat. Rev. Methods Primers 2021, 1, 13.10.1038/s43586-020-00009-8. DOI
Vogel S.; Rackwitz J.; Schürman R.; Prinz J.; Milosavljević A. R.; Réfrégiers M.; Giuliani A.; Bald I. Using DNA Origami Nanostructures To Determine Absolute Cross Sections for UV Photon-Induced DNA Strand Breakage. J. Phys. Chem. Lett. 2015, 6, 4589–4593. 10.1021/acs.jpclett.5b02238. PubMed DOI
Rackwitz J.; Bald I. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences—Influence of DNA Sequence and Topology. Chem. Eur. J. 2018, 24, 4680–4688. 10.1002/chem.201705889. PubMed DOI
Keller A.; Bald I.; Rotaru A.; Cauët E.; Gothelf K. V.; Besenbacher F. Probing Electron-Induced Bond Cleavage at the Single-Molecule Level Using DNA Origami Templates. ACS Nano 2012, 6, 4392–4399. 10.1021/nn3010747. PubMed DOI
Keller A.; Rackwitz J.; Cauët E.; Liévin J.; Körzdörfer T.; Rotaru A.; Gothelf K. V.; Besenbacher F.; Bald I. Sequence Dependence of Electron-induced DNA Strand Breakage Revealed by DNA Nanoarrays. Sci. Rep. 2015, 4, 7391.10.1038/srep07391. PubMed DOI PMC
Ray A.; Liosi K.; Ramakrishna S. N.; Spencer N. D.; Kuzuya A.; Yamakoshi Y. Single-Molecule AFM Study of DNA Damage by 1O2 Generated from Photoexcited C60. J. Phys. Chem. Lett. 2020, 11, 7819–7826. 10.1021/acs.jpclett.0c02257. PubMed DOI
Sala L.; Zerolová A.; Rodriguez A.; Reimitz D.; Davídková M.; Ebel K.; Bald I.; Kočišek J. Folding DNA into Origami Nanostructures Enhances Resistance to Ionizing Radiation. Nanoscale 2021, 13, 11197–11203. 10.1039/D1NR02013G. PubMed DOI PMC
Poppleton E.; Bohlin J.; Matthies M.; Sharma S.; Zhang F.; Šulc P. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 2020, 48, e72.10.1093/nar/gkaa417. PubMed DOI PMC
Ebel K.; Bald I. Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA. Int. J. Mol. Sci. 2020, 21, 111.10.3390/ijms21010111. PubMed DOI PMC
Endo M.; Katsuda Y.; Hidaka K.; Sugiyama H. Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure. J. Am. Chem. Soc. 2010, 132, 1592–1597. 10.1021/ja907649w. PubMed DOI
Endo M.; Katsuda Y.; Hidaka K.; Sugiyama H. A Versatile DNA Nanochip for Direct Analysis of DNA Base-Excision Repair. Angew. Chem., Int. Ed. 2010, 49, 9412–9416. 10.1002/anie.201003604. PubMed DOI
Sannohe Y.; Endo M.; Katsuda Y.; Hidaka K.; Sugiyama H. Visualization of Dynamic Conformational Switching of the G-Quadruplex in a DNA Nanostructure. J. Am. Chem. Soc. 2010, 132, 16311–16313. 10.1021/ja1058907. PubMed DOI
Adhikary A.; Kumar A.; Rayala R.; Hindi R. M.; Adhikary A.; Wnuk S. F.; Sevilla M. D. One-Electron Oxidation of Gemcitabine and Analogs: Mechanism of Formation of C3′ and C2’ Sugar Radicals. J. Am. Chem. Soc. 2014, 136, 15646–15653. 10.1021/ja5083156. PubMed DOI PMC
Kopyra J.; Keller A.; Bald I. On the Role of Fluoro-Substituted Nucleosides in DNA Radiosensitization for Tumor Radiation Therapy. RSC Adv. 2014, 4, 6825–6829. 10.1039/c3ra46735j. DOI
Wityk P.; Wieczór M.; Makurat S.; Chomicz-Mańka L.; Czub J.; Rak J. Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics. J. Chem. Theory Comput. 2017, 13, 6415–6423. 10.1021/acs.jctc.7b00978. PubMed DOI
Schürmann R.; Tanzer K.; Dabkowska I.; Denifl S.; Bald I. Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (< 3 eV) Electron Attachment. J. Phys. Chem. B 2017, 121, 5730–5734. 10.1021/acs.jpcb.7b02130. PubMed DOI
González L. N.; Arruda-Neto J. D. T.; Cotta M. A.; Carrer H.; Garcia F.; Silva R. A. S.; Moreau A. L. D.; Righi H.; Genofre G. C. DNA fragmentation by gamma radiation and electron beams using atomic force microscopy. J. Biol. Phys. 2012, 38, 531–542. 10.1007/s10867-012-9270-z. PubMed DOI PMC
Lim S.; Yoon H.; Ryu S.; Jung J.; Lee M.; Kim D. A Comparative Evaluation of Radiation-Induced DNA Damage using Real-Time PCR: Influence of Base Composition. Radiat. Res. 2006, 165, 430–437. 10.1667/RR3507.1. PubMed DOI
Svec D.; Tichopad A.; Novosadova V.; Pfaffl M. W.; Kubista M. How Good is a PCR Efficiency Estimate: Recommendations for Precise and Robust qPCR Efficiency Assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. 10.1016/j.bdq.2015.01.005. PubMed DOI PMC
Murray V.; Hardie M. E.; Gautam S. D. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes 2020, 11, 8.10.3390/genes11010008. PubMed DOI PMC
Chatgilialoglu C.Radical and Radical Ion Reactivity in Nucleic Acid Chemistry; John Wiley & Sons, Ltd.: 2009; Chapter 4, pp 99–133.
Schürmann R.; Tsering T.; Tanzer K.; Denifl S.; Kumar S. V. K.; Bald I. Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5–9 eV). Angew. Chem., Int. Ed. 2017, 56, 10952–10955. 10.1002/anie.201705504. PubMed DOI
Perstin A.; Poirier Y.; Sawant A.; Tambasco M. Quantifying the DNA-Damaging Effects of FLASH Irradiation with Plasmid DNA. Int. J. Radiat. Oncol. Biol. Phys. 2022, 10.1016/j.ijrobp.2022.01.049. PubMed DOI
Small K.; Angal-Kalinin D.; Chadwick A.; Edge R.; Henthorn N.; Jones R.; Kirkby K.; Merchant M.; Morris R.; Santina E.; et al. A Comparative Study of Biological Effects of Electrons and Co-60 Gamma Rays on pBR322 Plasmid DNA. Proc. of the 10th Int. Particle Accelerator Conf. 2019, 3533–3536. 10.18429/JACoW-IPAC2019-THPMP041. DOI
Small K. L.; Henthorn N. T.; Angal-Kalinin D.; Chadwick A. L.; Santina E.; Aitkenhead A.; Kirkby K. J.; Smith R. J.; Surman M.; Jones J.; et al. Evaluating Very High Energy Electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. 2021, 11, 3341.10.1038/s41598-021-82772-6. PubMed DOI PMC
Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment