The role of exciton delocalization in the major photosynthetic light-harvesting antenna of plants

. 2015 Mar 10 ; 108 (5) : 1047-56.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25762317

Grantová podpora
267333 European Research Council - International
281341 European Research Council - International

Odkazy

PubMed 25762317
PubMed Central PMC4375621
DOI 10.1016/j.bpj.2015.01.019
PII: S0006-3495(15)00113-7
Knihovny.cz E-zdroje

In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.

Zobrazit více v PubMed

Blankenship R.E. Wiley-Blackwell; Oxford, UK: 2002. Molecular Mechanisms of Photosynthesis.

Fleming G.R., van Grondelle R. The primary steps of photosynthesis. Phys. Today. 1994;47:48–55.

Van Grondelle R., Dekker J.P., Sundstrom V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta Bioenerg. 1994;1187:1–65.

van Grondelle R., Novoderezhkin V.I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 2006;8:793–807. PubMed

Novoderezhkin V.I., van Grondelle R. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 2010;12:7352–7365. PubMed

Niyogi K.K., Truong T.B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 2013;16:307–314. PubMed

Ruban A.V., Johnson M.P., Duffy C.D.P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta. 2012;1817:167–181. PubMed

Müller P., Li X.P., Niyogi K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001;125:1558–1566. PubMed PMC

Horton P., Ruban A.V., Walters R.G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:655–684. PubMed

Liu Z., Yan H., Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature. 2004;428:287–292. PubMed

Standfuss J., Terwisscha van Scheltinga A.C., Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J. 2005;24:919–928. PubMed PMC

Adolphs J., Renger T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 2006;91:2778–2797. PubMed PMC

Croce R., van Amerongen H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 2014;10:492–501. PubMed

Croce R., van Amerongen H. Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biology. 2011;104:142–153. PubMed

Van Amerongen H., van Grondelle R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B. 2001;105:604–617.

Kühlbrandt W. Structure and function of the plant light-harvesting complex, LHC-II. Curr. Opin. Struct. Biol. 1994;4:519–528.

Mozzo M., Passarini F., Croce R. Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II. Biochim. Biophys. Acta Bioenerg. 2008;1777:1263–1267. PubMed

Remelli R., Varotto C., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J. Biol. Chem. 1999;274:33510–33521. PubMed

Rogl H., Schödel R., Schubert A. Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry. 2002;41:2281–2287. PubMed

Rogl H., Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry. 1999;38:16214–16222. PubMed

Yang C., Kosemund K., Paulsen H. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry. 1999;38:16205–16213. PubMed

Fuciman M., Enriquez M.M., Frank H.A. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes. J. Phys. Chem. B. 2012;116:3834–3849. PubMed

Calhoun T.R., Ginsberg N.S., Fleming G.R. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B. 2009;113:16291–16295. PubMed

Palacios M.A., de Weerd F.L., van Amerongen H. Superradiance and exciton (de)localization in light-harvesting complex II from green plants? J. Phys. Chem. B. 2002;106:5782–5787.

Gradinaru C.C., Özdemir S., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys. J. 1998;75:3064–3077. PubMed PMC

Kleima F.J., Gradinaru C.C., van Amerongen H. Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. Biochemistry. 1997;36:15262–15268. PubMed

Bittner T., Irrgang K.-D., Wasielewski M.R. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J. Phys. Chem. 1994;98:11821–11826.

Novoderezhkin V.I., Palacios M.A., van Grondelle R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Angstrom crystal structure. J. Phys. Chem. B. 2005;109:10493–10504. PubMed

Novoderezhkin V., Marin A., van Grondelle R. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. Phys. Chem. Chem. Phys. 2011;13:17093–17103. PubMed

Renger T., Madjet M.E., Müh F. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. J. Plant Physiol. 2011;168:1497–1509. PubMed

Müh F., Renger T. Refined structure-based simulation of plant light-harvesting complex II: Linear optical spectra of trimers and aggregates. Biochim. Biophys. Acta Bioenerg. 2012;1817:1446–1460. PubMed

Müh F., Madjet Mel.-A., Renger T. Structure-based identification of energy sinks in plant light-harvesting complex II. J. Phys. Chem. B. 2010;114:13517–13535. PubMed

Schlau-Cohen G.S., Calhoun T.R., Fleming G.R. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B. 2009;113:15352–15363. PubMed

Bennett D.I.G., Amarnath K., Fleming G.R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 2013;135:9164–9173. PubMed

Caffarri S., Broess K., van Amerongen H. Excitation energy transfer and trapping in higher plant Photosystem II complexes with different antenna sizes. Biophys. J. 2011;100:2094–2103. PubMed PMC

Duffy C.D.P., Chmeliov J., Ruban A.V. Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J. Phys. Chem. B. 2013;117:10974–10986. PubMed

Wentworth M., Ruban A.V., Horton P. Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated photosystem II light-harvesting complexes. J. Biol. Chem. 2003;278:21845–21850. PubMed

Ruban A.V., Berera R., van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007;450:575–578. PubMed

Valkunas L., Chmeliov J., van Grondelle R. How photosynthetic proteins switch. J. Phys. Chem. Lett. 2012;3:2779–2784.

Krüger T.P.J., Ilioaia C., van Grondelle R. Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection. Biochim. Biophys. Acta. 2014;1837:1027–1038. PubMed

Krüger T.P.J., Wientjes E., van Grondelle R. Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc. Natl. Acad. Sci. USA. 2011;108:13516–13521. PubMed PMC

Kühlbrandt W., Wang D.N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994;367:614–621. PubMed

Georgakopoulou S., van der Zwan G., Croce R. Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry. 2007;46:4745–4754. PubMed

Krüger T.P.J., Novoderezhkin V.I., van Grondelle R. Fluorescence spectral dynamics of single LHCII trimers. Biophys. J. 2010;98:3093–3101. PubMed PMC

Valkunas L., Abramavicius D., Mančal T. Wiley-VCH Verlag; Weinheim, Germany: 2013. Molecular Excitation Dynamics and Relaxation.

Caffarri S., Passarini F., Croce R. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Lett. 2007;581:4704–4710. PubMed

Natali A., Roy L.M., Croce R. In vitro reconstitution of light-harvesting complexes of plants and green algae. J. Vis. Exp. 2014:e51852. PubMed PMC

Croce R., Canino G., Bassi R. Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry. 2002;41:7334–7343. PubMed

Rutkauskas D., Novoderezkhin V., van Grondelle R. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry. 2004;43:4431–4438. PubMed

Chenu A., Malý P., Mančal T. Dynamic coherence in excitonic molecular complexes under various excitation conditions. Chem. Phys. 2014;439:100–110.

Renger T., Marcus R.A. On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 2002;116:9997–10019.

Novoderezhkin V., Salverda J.M., van Grondelle R. Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach. J. Phys. Chem. B. 2003;107:1893–1912.

Novoderezhkin V.I., Palacios M.A., van Grondelle R. Energy-transfer dynamics in the LHCII complex of higher plants: modified Redfield approach. J. Phys. Chem. B. 2004;108:10363–10375. PubMed

Peterman E.J.G., Hobe S., van Amerongen H. Low-temperature spectroscopy of monomeric and trimeric forms of reconstituted light-harvesting chlorophyll ab complex. Biochim. Biophys. Acta Bioenerg. 1996;1273:171–174.

Plumley F.G., Schmidt G.W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA. 1987;84:146–150. PubMed PMC

Passarini F., Xu P., Croce R. Towards in vivo mutation analysis: knock-out of specific chlorophylls bound to the light-harvesting complexes of Arabidopsis thaliana—the case of CP24 (Lhcb6) Biochim. Biophys. Acta. 2014;1837:1500–1506. PubMed

Kunz R., Timpmann K., Köhler J. Fluctuations in the electron-phonon coupling of a single chromoprotein. Angew. Chem. Int. Ed. Engl. 2013;52:8726–8730. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...