Ion beam processing of DNA origami nanostructures

. 2024 ; 15 () : 207-214. [epub] 20240212

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38379932

DNA origami nanostructures are emerging as a bottom-up nanopatterning approach. Direct combination of this approach with top-down nanotechnology, such as ion beams, has not been considered because of the soft nature of the DNA material. Here we demonstrate that the shape of 2D DNA origami nanostructures deposited on Si substrates is well preserved upon irradiation by ion beams, modeling ion implantation, lithography, and sputtering conditions. Structural changes in 2D DNA origami nanostructures deposited on Si are analyzed using AFM imaging. The observed effects on DNA origami include structure height decrease or increase upon fast heavy ion irradiation in vacuum and in air, respectively. Slow- and medium-energy heavy ion irradiation results in the cutting of the nanostructures or crater formation with ion-induced damage in the 10 nm range around the primary ion track. In all these cases, the designed shape of the 2D origami nanostructure remains unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches.

Zobrazit více v PubMed

Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson G J, Han J-Y, et al. Nat Biotechnol. 2018;36(3):258–264. doi: 10.1038/nbt.4071. PubMed DOI

Jiang Q, Liu S, Liu J, Wang Z-G, Ding B. Adv Mater (Weinheim, Ger) 2019;31(45):1804785. doi: 10.1002/adma.201804785. PubMed DOI

Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos H A, Kostiainen M A, Linko V. Macromol Biosci. 2021;21(12):2100272. doi: 10.1002/mabi.202100272. PubMed DOI

Hao Y, Li Q, Fan C, Wang F. Small Struct. 2021;2(2):2000046. doi: 10.1002/sstr.202000046. DOI

Dickinson G D, Mortuza G M, Clay W, Piantanida L, Green C M, Watson C, Hayden E J, Andersen T, Kuang W, Graugnard E, et al. Nat Commun. 2021;12(1):2371. doi: 10.1038/s41467-021-22277-y. PubMed DOI PMC

Durante M, Cucinotta F A. Nat Rev Cancer. 2008;8(6):465–472. doi: 10.1038/nrc2391. PubMed DOI

Du K, Park M, Ding J, Hu H, Zhang Z. Nanotechnology. 2017;28(44):442501. doi: 10.1088/1361-6528/aa8a28. PubMed DOI

Tapio K, Bald I. Multifunct Mater. 2020;3(3):032001. doi: 10.1088/2399-7532/ab80d5. DOI

Martynenko I V, Ruider V, Dass M, Liedl T, Nickels P C. ACS Nano. 2021;15(7):10769–10774. doi: 10.1021/acsnano.1c04297. PubMed DOI PMC

Heuer-Jungemann A, Linko V. ACS Cent Sci. 2021;7(12):1969–1979. doi: 10.1021/acscentsci.1c01272. PubMed DOI PMC

Xie M, Fang W, Qu Z, Hu Y, Zhang Y, Chao J, Shi J, Wang L, Wang L, Tian Y, et al. Nat Commun. 2023;14(1):1745. doi: 10.1038/s41467-023-37333-y. PubMed DOI PMC

Piskunen P, Shen B, Keller A, Toppari J J, Kostiainen M A, Linko V. ACS Appl Nano Mater. 2021;4(1):529–538. doi: 10.1021/acsanm.0c02849. DOI

Shen B, Linko V, Tapio K, Kostiainen M A, Toppari J J. Nanoscale. 2015;7(26):11267–11272. doi: 10.1039/c5nr02300a. PubMed DOI

Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. Rep Prog Phys. 2016;79(11):116601. doi: 10.1088/0034-4885/79/11/116601. PubMed DOI

Vyšín L, Pachnerová Brabcová K, Štěpán V, Moretto-Capelle P, Bugler B, Legube G, Cafarelli P, Casta R, Champeaux J P, Sence M, et al. Radiat Environ Biophys. 2015;54(3):343–352. doi: 10.1007/s00411-015-0605-6. PubMed DOI

Ramakrishnan S, Ijäs H, Linko V, Keller A. Comput Struct Biotechnol J. 2018;16:342–349. doi: 10.1016/j.csbj.2018.09.002. PubMed DOI PMC

Sala L, Zerolová A, Rodriguez A, Reimitz D, Davídková M, Ebel K, Bald I, Kočišek J. Nanoscale. 2021;13:11197–11203. doi: 10.1039/d1nr02013g. PubMed DOI PMC

Wesch W, Wendler E, editors. Ion Beam Modification of Solids. Vol. 61. Cham, Switzerland: Springer International Publishing; 2016. pp. 137–182. ((Springer Series in Surface Sciences)). DOI

Aumayr F, Facsko S, El-Said A S, Trautmann C, Schleberger M. J Phys: Condens Matter. 2011;23(39):393001. doi: 10.1088/0953-8984/23/39/393001. PubMed DOI

Papaléo R M, Silva M R, Leal R, Grande P L, Roth M, Schattat B, Schiwietz G. Phys Rev Lett. 2008;101(16):167601. doi: 10.1103/physrevlett.101.167601. PubMed DOI

Papaléo R M, Thomaz R, Gutierres L I, de Menezes V M, Severin D, Trautmann C, Tramontina D, Bringa E M, Grande P L. Phys Rev Lett. 2015;114(11):118302. doi: 10.1103/physrevlett.114.118302. PubMed DOI

Olejniczak A, Rymzhanov R A. Nat Commun. 2023;14(1):889. doi: 10.1038/s41467-023-36357-8. PubMed DOI PMC

Lang M, Zhang F, Zhang J, Wang J, Schuster B, Trautmann C, Neumann R, Becker U, Ewing R C. Nat Mater. 2009;8(10):793–797. doi: 10.1038/nmat2528. PubMed DOI

Ochedowski O, Osmani O, Schade M, Bussmann B K, Ban-d’Etat B, Lebius H, Schleberger M. Nat Commun. 2014;5(1):3913. doi: 10.1038/ncomms4913. PubMed DOI

Karlušić M, Mičetić M, Kresić M, Jakšić M, Šantić B, Bogdanović-Radović I, Bernstorff S, Lebius H, Ban-d'Etat B, Žužek Rožman K, et al. Appl Surf Sci. 2021;541:148467. doi: 10.1016/j.apsusc.2020.148467. DOI

Hada M, Georgakilas A G. J Radiat Res. 2008;49(3):203–210. doi: 10.1269/jrr.07123. PubMed DOI

Karganov M Y, Alchinova I B, Polyakova M V, Feldman V I, Gorbunov S A, Ivanov O M, Rymzhanov R A, Skuratov V A, Volkov A E. Radiat Phys Chem. 2019;162:194–198. doi: 10.1016/j.radphyschem.2019.04.048. DOI

Nakano T, Akamatsu K, Tsuda M, Tujimoto A, Hirayama R, Hiromoto T, Tamada T, Ide H, Shikazono N. Proc Natl Acad Sci U S A. 2022;119(13):e2119132119. doi: 10.1073/pnas.2119132119. PubMed DOI PMC

Ahmad I, Akram W. Introductory Chapter: Introduction to Ion Implantation. In: Ahmad I, editor. Ion Implantation. Rijeka, Croatia: IntechOpen; 2017. DOI

Ziegler J F. Nucl Instrum Methods Phys Res, Sect B. 1985;6(1-2):270–282. doi: 10.1016/0168-583x(85)90645-7. DOI

Li P, Chen S, Dai H, Yang Z, Chen Z, Wang Y, Chen Y, Peng W, Shan W, Duan H. Nanoscale. 2021;13:1529–1565. doi: 10.1039/d0nr07539f. PubMed DOI

Utke I, Moshkalev S, Russell P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications. USA: Oxford University Press; 2012. ((Nanomanufacturing series)).

Aumayr F, Winter H. Philos Trans R Soc, A. 2004;362:77–102. doi: 10.1098/rsta.2003.1300. PubMed DOI

Kielar C, Xin Y, Xu X, Zhu S, Gorin N, Grundmeier G, Möser C, Smith D M, Keller A. Molecules. 2019;24(14):2577–2588. doi: 10.3390/molecules24142577. PubMed DOI PMC

Homola T, Matoušek J, Kormunda M, Wu L Y L, Černák M. Plasma Chem Plasma Process. 2013;33(5):881–894. doi: 10.1007/s11090-013-9467-3. DOI

Gwyddion. [ Dec 13; 2023 ]. Available from: http://gwyddion.net/

Rothard H. Nucl Phys News. 2022;32(1):29–33. doi: 10.1080/10619127.2021.1990680. DOI

Kim H, Surwade S P, Powell A, O’Donnell C, Liu H. Chem Mater. 2014;26(18):5265–5273. doi: 10.1021/cm5019663. DOI

Pillers M A, Lieberman M. J Vac Sci Technol, B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom. 2014;32(4):040602. doi: 10.1116/1.4879417. DOI

Surdutovich E, Yakubovich A V, Solov’yov A V. Sci Rep. 2013;3(1):1289. doi: 10.1038/srep01289. PubMed DOI PMC

Thomaz R, Lima N W, Teixeira D, Gutierres L I, Alencar I, Trautmann C, Grande P L, Papaléo R M. Curr Appl Phys. 2021;32:91–97. doi: 10.1016/j.cap.2021.10.004. DOI

Fang W, Xie M, Hou X, Liu X, Zuo X, Chao J, Wang L, Fan C, Liu H, Wang L. J Am Chem Soc. 2020;142(19):8782–8789. doi: 10.1021/jacs.0c01254. PubMed DOI

Hong F, Zhang F, Liu Y, Yan H. Chem Rev (Washington, DC, U S) 2017;117(20):12584–12640. doi: 10.1021/acs.chemrev.6b00825. PubMed DOI

Tapio K, Kielar C, Parikka J M, Keller A, Järvinen H, Fahmy K, Toppari J J. Chem Mater. 2023;35(5):1961–1971. doi: 10.1021/acs.chemmater.2c03190. DOI

Heuer-Jungemann A, Liedl T. Trends Chem. 2019;1(9):799–814. doi: 10.1016/j.trechm.2019.07.006. DOI

Heuer-Jungemann A, Linko V. ACS Cent Sci. 2021;7(12):1969–1979. doi: 10.1021/acscentsci.1c01272. PubMed DOI PMC

Opherden L, Oertel J, Barkleit A, Fahmy K, Keller A. Langmuir. 2014;30(27):8152–8159. doi: 10.1021/la501112a. PubMed DOI

Sala L, Perecko T, Mestek O, Pinkas D, Homola T, Kočišek J. ACS Appl Nano Mater. 2022;5(9):13267–13275. doi: 10.1021/acsanm.2c02976. DOI

Zhao Y, Zhang C, Yang L, Xu X, Xu R, Ma Q, Tang Q, Yang Y, Han D. Small. 2021;17(47):2103877. doi: 10.1002/smll.202103877. PubMed DOI

Johnson J A, Dehankar A, Robbins A, Kabtiyal P, Jergens E, Ho Lee K, Johnston-Halperin E, Poirier M, Castro C E, Winter J O. Mater Sci Eng, R. 2019;138:153–209. doi: 10.1016/j.mser.2019.06.003. DOI

Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H. J Am Chem Soc. 2011;133(44):17606–17609. doi: 10.1021/ja207898r. PubMed DOI

Linko V, Keller A. Small. 2023;19(34):2301935. doi: 10.1002/smll.202301935. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale

. 2025 Jan 02 ; 26 (1) : e202400863. [epub] 20241120

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace