CpG Methylation Protects DNA against Ionizing Radiation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40835578
PubMed Central
PMC12415931
DOI
10.1021/acs.jpcb.5c04043
Knihovny.cz E-zdroje
- MeSH
- CpG ostrůvky * MeSH
- DNA * chemie účinky záření MeSH
- ionizující záření * MeSH
- metylace DNA * účinky záření MeSH
- mikroskopie atomárních sil MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
Methylation of DNA CpG domains in cellular DNA is a key mechanism of epigenetic regulation. Disruptions in the processes maintaining DNA methylation can lead to diseases like cancer. The radiation response of certain cancer cells may be affected by their DNA methylation levels, which may have consequences in their response to radiotherapy. In this work, we utilized DNA origami nanotechnology to examine whether DNA methylation impacts DNA response to ionizing radiation in solution before biological processes come into play. Our findings reveal that a protective effect is achieved with just a few methylated CpG adducts. Both low-LET (electron) and high-LET (carbon ion) irradiation show a reduced lesion count in methylated DNA, as indicated by qPCR results. AFM single-molecule observations using DNA origami nanoframes suggest fewer double-strand breaks in methylated DNA after carbon ion irradiation. This radioprotective effect may contribute to the differential radiation response of cellular DNA and should be considered when predicting and evaluating DNA radiation damage yields.
Zobrazit více v PubMed
Moore L. D., Le T., Fan G.. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38:23–38. doi: 10.1038/npp.2012.112. PubMed DOI PMC
Greenberg M. V. C., Bourc’his D.. The Diverse Roles of DNA Methylation in Mammalian Development and Disease. Nat. Rev. Mol. Cell Biol. 2019;20:590–607. doi: 10.1038/s41580-019-0159-6. PubMed DOI
Smith J., Sen S., Weeks R. J., Eccles M. R., Chatterjee A.. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer. 2020;6:392–406. doi: 10.1016/j.trecan.2020.02.007. PubMed DOI
Sulkowski P. L., Oeck S., Dow J., Economos N. G., Mirfakhraie L., Liu Y., Noronha K., Bao X., Li J., Shuch B. M., King M. C., Bindra R. S., Glazer P. M.. Oncometabolites Suppress DNA Repair by Disrupting Local Chromatin Signalling. Nature. 2020;582:586–591. doi: 10.1038/s41586-020-2363-0. PubMed DOI PMC
Young I.-C., Brabletz T., Lindley L. E., Abreu M., Nagathihalli N., Zaika A., Briegel K. J.. Multi-Cancer Analysis Reveals Universal Association of Oncogenic LBH Expression with DNA Hypomethylation and WNT-Integrin Signaling Pathways. Cancer Gene Ther. 2023;30:1234–1248. doi: 10.1038/s41417-023-00633-y. PubMed DOI PMC
Schübeler D.. Function and Information Content of DNA Methylation. Nature. 2015;517:321–326. doi: 10.1038/nature14192. PubMed DOI
Zhu X., Wang Y., Tan L., Fu X.. The Pivotal Role of DNA Methylation in the Radio-Sensitivity of Tumor Radiotherapy. Cancer Med. 2018;7:3812–3819. doi: 10.1002/cam4.1614. PubMed DOI PMC
Jin Z., Liu Y.. DNA Methylation in Human Diseases. Genes Dis. 2018;5:1–8. doi: 10.1016/j.gendis.2018.01.002. PubMed DOI PMC
Zhu X., Gao Y., Feng Y., Zheng J., Dong Y., Zhang P., Zhu Y., Fan G.. DNA Methylation in Small Cell Lung Cancer. Clin. Transl. Discovery. 2023;3:e191. doi: 10.1002/ctd2.191. DOI
Miousse I. R., Kutanzi K. R., Koturbash I.. Effects of Ionizing Radiation on DNA Methylation: From Experimental Biology to Clinical Applications. Int. J. Radiat. Biol. 2017;93:457–469. doi: 10.1080/09553002.2017.1287454. PubMed DOI PMC
Belli M., Tabocchini M. A.. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020;21:5993. doi: 10.3390/ijms21175993. PubMed DOI PMC
Chi H.-C., Tsai C.-Y., Tsai M.-M., Lin K.-H.. Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. Int. J. Mol. Sci. 2018;19:555. doi: 10.3390/ijms19020555. PubMed DOI PMC
Lima F., Ding D., Goetz W., Yang A. J., Baulch J. E.. High LET 56Fe Ion Irradiation Induces Tissue-Specific Changes in DNA Methylation in the Mouse. Environ. Mol. Mutagen. 2014;55:266–277. doi: 10.1002/em.21832. PubMed DOI
Aypar U., Morgan W. F., Baulch J. E.. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2011;707:24–33. doi: 10.1016/j.mrfmmm.2010.12.003. PubMed DOI
Li T., Mao C., Wang X., Shi Y., Tao Y.. Epigenetic Crosstalk Between Hypoxia and Tumor Driven by HIF Regulation. J. Exp. Clin. Cancer Res. 2020;39:224. doi: 10.1186/s13046-020-01733-5. PubMed DOI PMC
Solov’yov A. V., Verkhovtsev A. V., Mason N. J.. et al. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem. Rev. 2024;124:8014–8129. doi: 10.1021/acs.chemrev.3c00902. PubMed DOI PMC
Schürmann R., Vogel S., Ebel K., Bald I.. The Physico-Chemical Basis of DNA Radiosensitization: Implications for Cancer Radiation Therapy. Chem. - Eur. J. 2018;24:10271–10279. doi: 10.1002/chem.201800804. PubMed DOI
Ameixa J., Bald I.. Unraveling the Complexity of DNA Radiation Damage Using DNA Nanotechnology. Acc. Chem. Res. 2024;57:1608–1619. doi: 10.1021/acs.accounts.4c00121. PubMed DOI PMC
Leung W. Y., Murray V.. The Influence of DNA Methylation on the Sequence Specificity of UVB- and UVC-Induced DNA Damage. J. Photochem. Photobiol., B. 2021;221:112225. doi: 10.1016/j.jphotobiol.2021.112225. PubMed DOI
Kogikoski S., Ameixa J., Mostafa A., Bald I.. Lab-on-a-DNA Origami: Nanoengineered Single-Molecule Platforms. Chem. Commun. 2023;59:4726–4741. doi: 10.1039/D3CC00718A. PubMed DOI PMC
Rajendran A., Endo M., Sugiyama H.. Single-Molecule Analysis Using DNA Origami. Angew. Chem., Int. Ed. 2012;51:874–890. doi: 10.1002/anie.201102113. PubMed DOI
Endo M., Katsuda Y., Hidaka K., Sugiyama H.. Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure. J. Am. Chem. Soc. 2010;132:1592–1597. doi: 10.1021/ja907649w. PubMed DOI
Sala L., Lyshchuk H., Sáchová J., Chvátil D., Kočišek J.. Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2’-Deoxy-2’-fluorocytidine Observed on DNA Origami Nanoframe Supports. J. Phys. Chem. Lett. 2022;13:3922–3928. doi: 10.1021/acs.jpclett.2c00584. PubMed DOI PMC
Sala L., Zerolová A., Rodriguez A., Reimitz D., Davídková M., Ebel K., Bald I., Kočišek J.. Folding DNA into Origami Nanostructures Enhances Resistance to Ionizing Radiation. Nanoscale. 2021;13:11197–11203. doi: 10.1039/D1NR02013G. PubMed DOI PMC
Ameixa J., Sala L., Kocišek J., Bald I.. Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale. ChemPhysChem. 2025;26:e202400863. doi: 10.1002/cphc.202400863. PubMed DOI PMC
Králík M., Šolc J., Chvátil D., Krist P., Turek K., Granja C.. Microtron MT 25 as a Source of Neutrons. Rev. Sci. Instrum. 2012;83:083502. doi: 10.1063/1.4739404. PubMed DOI
Rothard H.. CIRIL: Interdisciplinary Research at GANIL. Nucl. Phys. News. 2022;32:29–33. doi: 10.1080/10619127.2021.1990680. DOI
Sala L., Zerolová A., Vizcaino V., Mery A., Domaracka A., Rothard H., Boduch P., Pinkas D., Kocišek J.. Ion Beam Processing of DNA Origami Nanostructures. Beilstein J. Nanotechnol. 2024;15:207–214. doi: 10.3762/bjnano.15.20. PubMed DOI PMC
Brabcová K. P., Sihver L., Ukraintsev E., Štěpán V., Davídková M.. How Detection of Plasmid DNA Fragmentation Affects Radiation Strand Break Yields. Radiat. Prot. Dosim. 2019;183:89–92. doi: 10.1093/rpd/ncy222. PubMed DOI
Beaudier P., Zein S. A., Chatzipapas K., Tran H. N., Devès G., Plawinski L., Liénard R., Dupuy D., Barberet P., Incerti S., Gobet F., Seznec H.. Quantitative Analysis of Dose Dependent DNA Fragmentation in Dry pBR322 Plasmid using Long Read Sequencing and Monte Carlo Simulations. Sci. Rep. 2024;14:18650. doi: 10.1038/s41598-024-69406-3. PubMed DOI PMC
Georgakilas A. G., O’Neill P., Stewart R. D.. Induction and Repair of Clustered DNA Lesions: What Do We Know So Far? Radiat. Res. 2013;180:100–109. doi: 10.1667/RR3041.1. PubMed DOI
Aten J. A., Stap J., Krawczyk P. M., van Oven C. H., Hoebe R. A., Essers J., Kanaar R.. Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains. Science. 2004;303:92–95. doi: 10.1126/science.1088845. PubMed DOI
Bertolet A., Ramos-Méndez J., McNamara A., Yoo D., Ingram S., Henthorn N., Warmenhoven J.-W., Faddegon B., Merchant M., McMahon S. J., Paganetti H., Schuemann J.. Impact of DNA Geometry and Scoring on Monte Carlo Track-Structure Simulations of Initial Radiation-Induced Damage. Radiat. Res. 2022;198:207–220. doi: 10.1667/RADE-21-00179.1. PubMed DOI PMC
Psonka K., Gudowska-Nowak E., Brons S., Elsässer T., Heiss M., Taucher-Scholz G.. Ionizing Radiation-Induced Fragmentation of Plasmid DNA – Atomic Force Microscopy and Biophysical Modeling. Adv. Space Res. 2007;39:1043–1049. doi: 10.1016/j.asr.2007.02.089. DOI
Pachnerová Brabcová K., Sihver L., Yasuda N., Matuo Y., Štěpán V., Davídková M.. Clustered DNA Damage on Subcellular Level: Effect of Scavengers. Radiat. Environ. Biophys. 2014;53:705–712. doi: 10.1007/s00411-014-0557-2. PubMed DOI
Vyšín L., Brabcová K. P., Štěpán V.. et al. Proton-induced direct and indirect damage of plasmid DNA. Radiat. Environ. Biophys. 2015;54:343–352. doi: 10.1007/s00411-015-0605-6. PubMed DOI
Roush A. E., Riaz M., Misra S. K., Weinberger S. R., Sharp J. S.. Intrinsic Buffer Hydroxyl Radical Dosimetry Using Tris(hydroxymethyl)aminomethane. J. Am. Soc. Mass Spectrom. 2020;31:169–172. doi: 10.1021/jasms.9b00088. PubMed DOI PMC
Sala L., Rakovský J., Zerolová A., Kočišek J.. Light-Induced Damage to DNA Origami Nanostructures in the 193 nm-310 nm Range. J. Phys. B: At. Mol. Opt. Phys. 2023;56:185101. doi: 10.1088/1361-6455/acf3bd. DOI
Rezaee M., Adhikary A.. The Effects of Particle LET and Fluence on the Complexity and Frequency of Clustered DNA Damage. DNA. 2024;4:34–51. doi: 10.3390/dna4010002. PubMed DOI PMC
Vyšín L., Burian T., Ukraintsev E., Davídková M., Grisham M. E., Heinbuch S., Rocca J. J., Juha L.. Dose-Rate Effects in Breaking DNA Strands by Short Pulses of Extreme Ultraviolet Radiation. Radiat. Res. 2018;189:466–476. doi: 10.1667/RR14825.1. PubMed DOI
Perstin A., Poirier Y., Sawant A., Tambasco M.. Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA. Int. J. Radiat. Oncol. Biol. Phys. 2022;113:437–447. doi: 10.1016/j.ijrobp.2022.01.049. PubMed DOI
Prise K. M., Gillies N. E., Michael B. D.. Further Evidence for Double-Strand Breaks Originating from a Paired Radical Precursor from Studies of Oxygen Fixation Processes. Radiat. Res. 1999;151:635–641. doi: 10.2307/3580201. PubMed DOI
Buglewicz D. J., Su C., Banks A. B., Stenger-Smith J., Elmegerhi S., Hirakawa H., Fujimori A., Kato T. A.. Metal Ions Modify In Vitro DNA Damage Yields with High-LET Radiation. Toxics. 2023;11:773. doi: 10.3390/toxics11090773. PubMed DOI PMC
Madugundu G. S., Cadet J., Wagner J. R.. Hydroxyl-Radical-Induced Oxidation of 5-Methylcytosine in Isolated and Cellular DNA. Nucleic Acids Res. 2014;42:7450–7460. doi: 10.1093/nar/gku334. PubMed DOI PMC
Rooman M., Pucci F.. Estimating the Vertical Ionization Potential of Single-Stranded DNA Molecules. J. Chem. Inf. Model. 2023;63:1766–1775. doi: 10.1021/acs.jcim.2c01525. PubMed DOI
Uddin I. A., Stec E., Papadantonakis G. A.. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs. ChemPhysChem. 2024;25:e202300946. doi: 10.1002/cphc.202400391. PubMed DOI
Kumari N., Vartak S. V., Dahal S., Kumari S., Desai S. S., Gopalakrishnan V., Choudhary B., Raghavan S. C.. G-quadruplex Structures Contribute to Differential Radiosensitivity of the Human Genome. iScience. 2019;21:288–307. doi: 10.1016/j.isci.2019.10.033. PubMed DOI PMC