Proton-induced direct and indirect damage of plasmid DNA
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologické modely MeSH
- dvouřetězcové zlomy DNA MeSH
- elektroforéza v agarovém gelu MeSH
- enzymy opravy DNA metabolismus MeSH
- lineární přenos energie MeSH
- plazmidy metabolismus účinky záření MeSH
- poškození DNA * MeSH
- protony škodlivé účinky MeSH
- roztoky MeSH
- vztah dávky záření a odpovědi MeSH
- záření gama škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enzymy opravy DNA MeSH
- protony MeSH
- roztoky MeSH
Clustered DNA damage induced by 10, 20 and 30 MeV protons in pBR322 plasmid DNA was investigated. Besides determination of strand breaks, additional lesions were detected using base excision repair enzymes. The plasmid was irradiated in dry form, where indirect radiation effects were almost fully suppressed, and in water solution containing only minimal residual radical scavenger. Simultaneous irradiation of the plasmid DNA in the dry form and in the solution demonstrated the contribution of the indirect effect as prevalent. The damage composition slightly differed when comparing the results for liquid and dry samples. The obtained data were also subjected to analysis concerning different methodological approaches, particularly the influence of irradiation geometry, models used for calculation of strand break yields and interpretation of the strand breaks detected with the enzymes. It was shown that these parameters strongly affect the results.
Zobrazit více v PubMed
Radiat Res. 2013 Jul;180(1):100-9 PubMed
Radiat Res. 2011 Jun;175(6):797-805 PubMed
Int J Radiat Biol. 1993 Nov;64(5):497-510 PubMed
Biol Sci Space. 2004 Dec;18(4):206-15 PubMed
Radiat Prot Dosimetry. 2001;97(1):33-8 PubMed
Oncogene. 2003 Oct 13;22(45):7034-42 PubMed
Radiat Environ Biophys. 2014 Nov;53(4):705-12 PubMed
Phys Med Biol. 2009 Aug 7;54(15):4705-21 PubMed
Int J Radiat Biol. 2005 Jan;81(1):41-54 PubMed
J Radiat Res. 2008 May;49(3):203-10 PubMed
Radiat Res. 2013 Mar;179(3):257-72 PubMed
Nucleic Acids Res. 2002 Aug 1;30(15):3464-72 PubMed
Radiat Environ Biophys. 2012 Mar;51(1):43-52 PubMed
Nat Rev Cancer. 2008 Jun;8(6):465-72 PubMed
J Radiat Res. 2009 Jan;50(1):27-36 PubMed
Radiat Res. 2012 May;177(5):614-27 PubMed
Radiat Res. 2014 Feb;181(2):177-83 PubMed
J Phys Chem B. 2012 May 24;116(20):5900-6 PubMed
Radiat Prot Dosimetry. 2015 Sep;166(1-4):44-8 PubMed
Carcinogenesis. 1999 May;20(5):905-9 PubMed
Gene. 1977;2(2):95-113 PubMed
Int J Radiat Biol. 2008 Jan;84(1):23-33 PubMed
Phys Med Biol. 2006 Apr 7;51(7):1693-706 PubMed
Cancer Nanotechnol. 2014;5(1):6 PubMed
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8293-8 PubMed
J Theor Biol. 1987 Jul 21;127(2):229-45 PubMed
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):060701 PubMed
Biochem J. 1999 Mar 15;338 ( Pt 3):629-36 PubMed
Int J Radiat Biol. 2000 Nov;76(11):1475-83 PubMed
Br J Cancer. 2004 Apr 5;90(7):1297-301 PubMed
Radiat Res. 1992 Mar;129(3):333-44 PubMed
Phys Med. 2014 May;30(3):255-70 PubMed
Ion beam processing of DNA origami nanostructures
Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA
DNA damage modeled with Geant4-DNA: effects of plasmid DNA conformation and experimental conditions
Folding DNA into origami nanostructures enhances resistance to ionizing radiation