Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21GRD02 BIOSPHERE
EURAMET
PubMed
36555249
PubMed Central
PMC9779025
DOI
10.3390/ijms232415606
PII: ijms232415606
Knihovny.cz E-zdroje
- Klíčová slova
- Agarose Gel Electrophoresis (AGE), Atomic Force Microscopy (AFM), biodosimetry, clustered DNA damage, damage biomarkers, linear energy transfer (LET), proton therapy beam, scavenging capacity,
- MeSH
- DNA genetika MeSH
- plazmidy genetika MeSH
- poškození DNA MeSH
- protonová terapie * MeSH
- protony * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- protony * MeSH
Modeling ionizing radiation interaction with biological matter is a major scientific challenge, especially for protons that are nowadays widely used in cancer treatment. That presupposes a sound understanding of the mechanisms that take place from the early events of the induction of DNA damage. Herein, we present results of irradiation-induced complex DNA damage measurements using plasmid pBR322 along a typical Proton Treatment Plan at the MedAustron proton and carbon beam therapy facility (energy 137-198 MeV and Linear Energy Transfer (LET) range 1-9 keV/μm), by means of Agarose Gel Electrophoresis and DNA fragmentation using Atomic Force Microscopy (AFM). The induction rate Mbp-1 Gy-1 for each type of damage, single strand breaks (SSBs), double-strand breaks (DSBs), base lesions and non-DSB clusters was measured after irradiations in solutions with varying scavenging capacity containing 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) and coumarin-3-carboxylic acid (C3CA) as scavengers. Our combined results reveal the determining role of LET and Reactive Oxygen Species (ROS) in DNA fragmentation. Furthermore, AFM used to measure apparent DNA lengths provided us with insights into the role of increasing LET in the induction of highly complex DNA damage.
Atominstitut Technische Universität Wien 1020 Vienna Austria
Nuclear Physics Institute Czech Academy of Sciences Na Truhlářce 39 64 180 86 Prague Czech Republic
Zobrazit více v PubMed
Nikitaki Z., Velalopoulou A., Zanni V., Tremi I., Havaki S., Kokkoris M., Gorgoulis V.G., Koumenis C., Georgakilas A.G. Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev. Mol. Med. 2022;24:e15. doi: 10.1017/erm.2022.6. PubMed DOI
Ward J.F. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. In: Cohn W.E., Moldave K., editors. Progress in Nucleic Acid Research and Molecular Biology. Volume 35. Academic Press; New York, NY, USA: 1988. pp. 95–125. PubMed
Ward J.F. The complexity of DNA damage: Relevance to biological consequences. Int. J. Radiat. Biol. 1994;66:427–432. doi: 10.1080/09553009414551401. PubMed DOI
Sage E., Harrison L. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival. Mutat. Res. 2011;711:123–133. doi: 10.1016/j.mrfmmm.2010.12.010. PubMed DOI PMC
Asaithamby A., Hu B., Chen D.J. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc. Natl. Acad. Sci. USA. 2011;108:8293–8298. doi: 10.1073/pnas.1016045108. PubMed DOI PMC
Mavragani I.V., Nikitaki Z., Kalospyros S.A., Georgakilas A.G. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers. 2019;11:1789. doi: 10.3390/cancers11111789. PubMed DOI PMC
Schipler A., Mladenova V., Soni A., Nikolov V., Saha J., Mladenov E., Iliakis G. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res. 2016;44:7673–7690. doi: 10.1093/nar/gkw487. PubMed DOI PMC
Sutherland B.M., Bennett P.V., Sidorkina O., Laval J. Clustered Damages and Total Lesions Induced in DNA by Ionizing Radiation: Oxidized Bases and Strand Breaks. Biochemistry. 2000;39:8026–8031. doi: 10.1021/bi9927989. PubMed DOI
Hada M., Georgakilas A.G. Formation of clustered DNA damage after high-LET irradiation: A review. J. Radiat. Res. 2008;49:203–210. doi: 10.1269/jrr.07123. PubMed DOI
Fakir H., Sachs R.K., Stenerlöw B., Hofmann W. Clusters of DNA double-strand breaks induced by different doses of nitrogen ions for various LETs: Experimental measurements and theoretical analyses. Radiat. Res. 2006;166:917–927. doi: 10.1667/RR0639.1. PubMed DOI
Asaithamby A., Chen D.J. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat. Res. 2011;711:87–99. doi: 10.1016/j.mrfmmm.2010.11.002. PubMed DOI PMC
Lorat Y., Brunner C.U., Schanz S., Jakob B., Taucher-Scholz G., Rübe C.E. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy—The heavy burden to repair. DNA Repair. 2015;28:93–106. doi: 10.1016/j.dnarep.2015.01.007. PubMed DOI
Nikitaki Z., Nikolov V., Mavragani I.V., Mladenov E., Mangelis A., Laskaratou D.A., Fragkoulis G.I., Hellweg C.E., Martin O.A., Emfietzoglou D., et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET) Free Radic. Res. 2016;50:S64–S78. doi: 10.1080/10715762.2016.1232484. PubMed DOI
Kalospyros S.A., Gika V., Nikitaki Z., Kalamara A., Kyriakou I., Emfietzoglou D., Kokkoris M., Georgakilas A.G. Monte Carlo Simulation-Based Calculations of Complex DNA Damage for Incidents of Environmental Ionizing Radiation Exposure. Appl. Sci. 2021;11:8985. doi: 10.3390/app11198985. DOI
Surdutovich E., Solov’yov A.V. Multiscale approach to the physics of radiation damage with ions. Eur. Phys. J. D. 2014;68:353. doi: 10.1140/epjd/e2014-50004-0. DOI
Surdutovich E., Gallagher D.C., Solov’yov A.V. Calculation of complex DNA damage induced by ions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011;84:051918. doi: 10.1103/PhysRevE.84.051918. PubMed DOI
Ray S., Cekanaviciute E., Lima I.P., Sørensen B.S., Costes S.V. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int. J. Part. Ther. 2018;5:15–24. doi: 10.14338/IJPT-18-00018.1. PubMed DOI PMC
Carter R.J., Nickson C.M., Thompson J.M., Kacperek A., Hill M.A., Parsons J.L. Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response. Int. J. Radiat. Oncol. Biol. Phys. 2018;100:776–784. doi: 10.1016/j.ijrobp.2017.11.012. PubMed DOI PMC
Chaudhary P., Marshall T.I., Currell F.J., Kacperek A., Schettino G., Prise K.M. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:86–94. doi: 10.1016/j.ijrobp.2015.07.2279. PubMed DOI PMC
Dizdaroglu M., Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 2012;46:382–419. doi: 10.3109/10715762.2011.653969. PubMed DOI
Le Caër S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water. 2011;3:235–253. doi: 10.3390/w3010235. DOI
Peddi P., Loftin C.W., Dickey J.S., Hair J.M., Burns K.J., Aziz K., Francisco D.C., Panayiotidis M.I., Sedelnikova O.A., Bonner W.M., et al. DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic. Biol. Med. 2010;48:1435–1443. doi: 10.1016/j.freeradbiomed.2010.02.033. PubMed DOI PMC
LaVerne J.A., Pimblott S.M. Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous solutions of biological interest. Radiat. Res. 1993;135:16–23. doi: 10.2307/3578391. PubMed DOI
Pang D., Thierry A.R., Dritschilo A. DNA studies using atomic force microscopy: Capabilities for measurement of short DNA fragments. Front. Mol. Biosci. 2015;2:1. doi: 10.3389/fmolb.2015.00001. PubMed DOI PMC
Pyne A.L.B., Noy A., Main K.H.S., Velasco-Berrelleza V., Piperakis M.M., Mitchenall L.A., Cugliandolo F.M., Beton J.G., Stevenson C.E.M., Hoogenboom B.W., et al. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat. Commun. 2021;12:1053. doi: 10.1038/s41467-021-21243-y. PubMed DOI PMC
Melters D.P., Dalal Y. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin. J. Mol. Biol. 2021;433:166720. doi: 10.1016/j.jmb.2020.11.019. PubMed DOI PMC
Küpeli Akkol E., Genç Y., Karpuz B., Sobarzo-Sánchez E., Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers. 2020;12:1959. doi: 10.3390/cancers12071959. PubMed DOI PMC
Pachnerová Brabcová K., Sihver L., Ukraintsev E., Štěpán V., Davídková M. HOW DETECTION OF PLASMID DNA FRAGMENTATION AFFECTS RADIATION STRAND BREAK YIELDS. Radiat. Prot. Dosim. 2019;183:89–92. doi: 10.1093/rpd/ncy222. PubMed DOI
Pouget J.P., Frelon S., Ravanat J.L., Testard I., Odin F., Cadet J. Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat. Res. 2002;157:589–595. doi: 10.1667/0033-7587(2002)157[0589:FOMDBI]2.0.CO;2. PubMed DOI
Nikitaki Z., Hellweg C.E., Georgakilas A.G., Ravanat J.-L. Stress-induced DNA damage biomarkers: Applications and limitations. Front. Chem. 2015;3:35. doi: 10.3389/fchem.2015.00035. PubMed DOI PMC
Ravanat J.L., Breton J., Douki T., Gasparutto D., Grand A., Rachidi W., Sauvaigo S. Radiation-mediated formation of complex damage to DNA: A chemical aspect overview. Br. J. Radiol. 2014;87:20130715. doi: 10.1259/bjr.20130715. PubMed DOI PMC
Pachnerová Brabcová K., Štěpán V., Karamitros M., Karabín M., Dostálek P., Incerti S., Davídková M., Sihver L. Contribution of indirect effects to clustered damage in DNA irradiated with protons. Radiat. Prot. Dosim. 2015;166:44–48. doi: 10.1093/rpd/ncv159. PubMed DOI
Sui L., Wang Y., Wang X., Kong F., Liu J., Zhou P. Clustered DNA damage induced by protons radiation in plasmid DNA. Chin. Sci. Bull. 2013;58:3217–3223. doi: 10.1007/s11434-013-5940-x. DOI
Leloup C., Garty G., Assaf G., Cristovão A., Breskin A., Chechik R., Shchemelinin S., Paz-Elizur T., Livneh Z., Schulte R.W., et al. Evaluation of lesion clustering in irradiated plasmid DNA. Int. J. Radiat. Biol. 2005;81:41–54. doi: 10.1080/09553000400017895. PubMed DOI
Chapman J.D., Reuvers A.P., Borsa J., Greenstock C.L. Chemical Radioprotection and Radiosensitization of Mammalian Cells Growing in Vitro. Radiat. Res. 1973;56:291–306. doi: 10.2307/3573667. PubMed DOI
Roots R., Okada S. Estimation of Life Times and Diffusion Distances of Radicals Involved in X-Ray-Induced DNA Strand Breaks or Killing of Mammalian Cells. Radiat. Res. 1975;64:306–320. doi: 10.2307/3574267. PubMed DOI
Dang H.M., van Goethem M.J., van der Graaf E.R., Brandenburg S., Hoekstra R., Schlathölter T. Heavy ion induced damage to plasmid DNA: Plateau region vs. spread out Bragg-peak. Eur. Phys. J. D. 2011;63:359–367. doi: 10.1140/epjd/e2011-10679-1. DOI
Dang H.M., van Goethem M.J., van der Graaf E.R., Brandenburg S., Hoekstra R., Schlathölter T. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies. Eur. Phys. J. D. 2010;60:51–58. doi: 10.1140/epjd/e2010-00080-1. DOI
Vanderwaeren L., Dok R., Verstrepen K., Nuyts S. Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers. 2021;13:604. doi: 10.3390/cancers13040604. PubMed DOI PMC
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 2014;59:R419–R472. doi: 10.1088/0031-9155/59/22/R419. PubMed DOI
Yamashita S., Baldacchino G., Maeyama T., Taguchi M., Muroya Y., Lin M., Kimura A., Murakami T., Katsumura Y. Mechanism of radiation-induced reactions in aqueous solution of coumarin-3-carboxylic acid: Effects of concentration, gas and additive on fluorescent product yield. Free Radic. Res. 2012;46:861–871. doi: 10.3109/10715762.2012.684879. PubMed DOI
Hicks M., Gebicki J.M. Rate constants for reaction of hydroxyl radicals with Tris, Tricine and Hepes buffers. FEBS Lett. 1986;199:92–94. doi: 10.1016/0014-5793(86)81230-3. DOI
Wéra A.C., Heuskin A.C., Riquier H., Michiels C., Lucas S. Low-LET proton irradiation of A549 non-small cell lung adenocarcinoma cells: Dose response and RBE determination. Radiat. Res. 2013;179:273–281. doi: 10.1667/RR3008.1. PubMed DOI
Sutherland B.M., Bennett P.V., Sidorkina O., Laval J. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc. Natl. Acad. Sci. USA. 2000;97:103. doi: 10.1073/pnas.97.1.103. PubMed DOI PMC
Cowan R., Collis C.M., Grigg G.W. Breakage of double-stranded DNA due to single-stranded nicking. J. Theor. Biol. 1987;127:229–245. doi: 10.1016/S0022-5193(87)80133-9. PubMed DOI
Śmiałek M.A. Early models of DNA damage formation. J. Phys. Conf. Ser. 2012;373:012013. doi: 10.1088/1742-6596/373/1/012013. DOI
Bezanilla M., Manne S., Laney D.E., Lyubchenko Y.L., Hansma H.G. Adsorption of DNA to Mica, Silylated Mica, and Minerals: Characterization by Atomic Force Microscopy. Langmuir. 1995;11:655–659. doi: 10.1021/la00002a050. DOI
Pachnerová Brabcová K., Sihver L., Ukraintsev E., Štěpán V., Davídková M. Length computation of irradiated plasmid DNA molecules. Biointerphases. 2018;13:061005. doi: 10.1116/1.5050502. PubMed DOI
Obeidat M., McConnell K.A., Li X., Bui B., Stathakis S., Papanikolaou N., Rasmussen K., Ha C.S., Lee S.E., Shim E.Y., et al. DNA double-strand breaks as a method of radiation measurements for therapeutic beams. Med. Phys. 2018;45:3460–3465. doi: 10.1002/mp.12956. PubMed DOI PMC
Vyšín L., Pachnerová Brabcová K., Štěpán V., Moretto-Capelle P., Bugler B., Legube G., Cafarelli P., Casta R., Champeaux J.P., Sence M., et al. Proton-induced direct and indirect damage of plasmid DNA. Radiat. Environ. Biophys. 2015;54:343–352. doi: 10.1007/s00411-015-0605-6. PubMed DOI
Ohsawa D., Hiroyama Y., Kobayashi A., Kusumoto T., Kitamura H., Hojo S., Kodaira S., Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. J. Radiat. Res. 2021;63:255–260. doi: 10.1093/jrr/rrab114. PubMed DOI PMC
Small K.L., Henthorn N.T., Angal-Kalinin D., Chadwick A.L., Santina E., Aitkenhead A., Kirkby K.J., Smith R.J., Surman M., Jones J., et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-82772-6. PubMed DOI PMC
Small K.L., Henthorn N.T., Angal-Kalinin D., Chadwick A., Edge R., Henthorn N.T., Jones R.M., Kirkby K., Merchant M.J., Morris R., et al. A Comparative Study of Biological Effects of Electrons and Co-60 Gamma Rays on pBR322 Plasmid DNA; Proceedings of the IPAC2019; Melbourne, Australia. 19–24 May 2019; pp. 3533–3536.
Souici M., Khalil T.T., Boulanouar O., Belafrites A., Mavon C., Fromm M. DNA strand break dependence on Tris and arginine scavenger concentrations under ultra-soft X-ray irradiation: The contribution of secondary arginine radicals. Radiat. Environ. Biophys. 2016;55:215–228. doi: 10.1007/s00411-016-0642-9. PubMed DOI
Shiina T., Watanabe R., Shiraishi I., Suzuki M., Sugaya Y., Fujii K., Yokoya A. Induction of DNA damage, including abasic sites, in plasmid DNA by carbon ion and X-ray irradiation. Radiat. Environ. Biophys. 2013;52:99–112. doi: 10.1007/s00411-012-0447-4. PubMed DOI
Ushigome T., Shikazono N., Fujii K., Watanabe R., Suzuki M., Tsuruoka C., Tauchi H., Yokoya A. Yield of single- and double-strand breaks and nucleobase lesions in fully hydrated plasmid DNA films irradiated with high-LET charged particles. Radiat. Res. 2012;177:614–627. doi: 10.1667/RR2701.1. PubMed DOI
Urushibara A., Shikazono N., O’Neill P., Fujii K., Wada S., Yokoya A. LET dependence of the yield of single-, double-strand breaks and base lesions in fully hydrated plasmid DNA films by 4He(2+) ion irradiation. Int. J. Radiat. Biol. 2008;84:23–33. doi: 10.1080/09553000701616072. PubMed DOI
Klimczak U., Ludwig D.C., Mark F., Rettberg P., Schulte-Frohlinde D. Irradiation of plasmid and phage DNA in water-alcohol mixtures: Strand breaks and lethal damage as a function of scavenger concentration. Int. J. Radiat. Biol. 1993;64:497–510. doi: 10.1080/09553009314551711. PubMed DOI