Release of Neutrals in Electron-Induced Ligand Separation from MeCpPtMe3: Theory Meets Experiment

. 2025 Feb 27 ; 129 (8) : 2016-2023. [epub] 20250213

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39948485

The interest in the electron impact-induced ligand release from MeCpPtMe3 [trimethyl(methylcyclopentadienyl)platinum(IV)] is motivated by its widespread use as a precursor in focused electron and ion beam nanofabrication. By experimentally studying the electron impact dissociative ionization of MeCpPtMe3 under single-collision conditions, we have found that the removal of two methyl radicals is energetically more favorable than the removal of one radical and even energetically comparable to the nondissociative ionization of MeCpPtMe3. This observation is explained by the structural rearrangement of the MeCpPtMe3+ ion prior to dissociation, resulting in the removal of ethane instead of two methyl groups. This fragmentation pathway is computationally confirmed and studied by irradiation-driven molecular dynamics (IDMD) simulations. The formation of complex molecules in irradiation-induced molecular dissociation is a general phenomenon that can occur in various molecular systems. This study explains the puzzling results of previous experiments with MeCpPtMe3 molecules and highlights the use of the IDMD approach to describe radiation-induced chemical transformations in molecular systems.

Zobrazit více v PubMed

Utke I.; Moshkalev S.; Russell P.. Nanofabrication Using Focused Ion and Electron Beams; Oxford University Press: New York, 2012.

De Teresa J. M.Nanofabrication: Nanolithography Techniques and Their Applications; IOP Publishing Ltd: Bristol, 2020.

Utke I.; Hoffmann P.; Melngailis J. Gas-Assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. Technol. B 2008, 26, 1197–1276. 10.1116/1.2955728. DOI

Swiderek P.; Marbach H.; Hagen C. W. Chemistry for Electron-Induced Nanofabrication. Beilstein J. Nanotechnol. 2018, 9, 1317–1320. 10.3762/bjnano.9.124. PubMed DOI PMC

Barth S.; Huth M.; Jungwirth F. Precursors for Direct-Write Nanofabrication with Electrons. J. Mater. Chem. C 2020, 8, 15884–15919. 10.1039/D0TC03689G. DOI

Winkler R.; Fowlkes J. D.; Rack P. D.; Plank H. 3D Nanoprinting via Focused Electron Beams. J. Appl. Phys. 2019, 125 (21), 210901.10.1063/1.5092372. DOI

Huth M.; Porrati F.; Barth S. Living up to its Potential—Direct-Write Nanofabrication with Focused Electron Beams. J. Appl. Phys. 2021, 130 (17), 170901.10.1063/5.0064764. DOI

Utke I.; Swiderek P.; Höflich K.; Madajska K.; Jurczyk J.; Martinović P.; Szymańska I. B. Coordination and Organometallic Precursors of Group 10 and 11: Focused Electron Beam Induced Deposition of Metals and Insight Gained from Chemical Vapour Deposition, Atomic Layer Deposition, and Fundamental Surface and Gas Phase Studies. Coord. Chem. Rev. 2022, 458, 213851.10.1016/j.ccr.2021.213851. DOI

Botman A.; Mulders J. J. L.; Hagen C. W. Creating Pure Nanostructures From Electron-Beam-Induced Deposition Using Purification Techniques: A Technology Perspective. Nanotechnology 2009, 20, 372001.10.1088/0957-4484/20/37/372001. PubMed DOI

Warneke Z.; Rohdenburg M.; Warneke J.; Kopyra J.; Swiderek P. Electron-Driven and Thermal Chemistry During Water-Assisted Purification of Platinum Nanomaterials Generated by Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 77–90. 10.3762/bjnano.9.10. PubMed DOI PMC

Indrajith S.; Rousseau P.; Huber B. A.; Nicolafrancesco C.; Domaracka A.; Grygoryeva K.; Nag P.; Sedmidubská B.; Fedor J.; Kočišek J. Decomposition of Iron Pentacarbonyl Induced by Singly and Multiply Charged Ions and Implications for Focused Ion Beam-Induced Deposition. J. Phys. Chem. C 2019, 123, 10639–10645. 10.1021/acs.jpcc.9b00289. DOI

Engmann S.; Stano M.; Matejčík Š.; Ingólfsson O. Gas Phase Low Energy Electron Induced Decomposition of the Focused Electron Beam Induced Deposition (FEBID) Precursor Trimethyl (Methylcyclopentadienyl) Platinum(iv) (MeCpPtMe3). Phys. Chem. Chem. Phys. 2012, 14, 14611–14618. 10.1039/c2cp42637d. PubMed DOI

Wnuk J. D.; Gorham J. M.; Rosenberg S. G.; van Dorp W. F.; Madey T. E.; Hagen C. W.; Fairbrother D. H. Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem. C 2009, 113, 2487–2496. 10.1021/jp807824c. DOI

Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI

Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spectrom. Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI

Lyshchuk H.; Chaudhary A.; Luxford T. F. M.; Ranković M.; Kočišek J.; Fedor J.; McElwee-White L.; Nag P. Electron-Induced Ligand Loss from Iron Tetracarbonyl Methyl Acrylate. Beilstein J. Nanotechnol. 2024, 15, 797–807. 10.3762/bjnano.15.66. PubMed DOI PMC

Zawadzki M. Electron-Impact Ionization Cross Section of Formic Acid. Eur. Phys. J. D 2018, 72 (1), 12.10.1140/epjd/e2017-80540-8. DOI

Ranković M.; Chalabala J.; Zawadzki M.; Kočišek J.; Slavíček P.; Fedor J. Dissociative Ionization Dynamics of Dielectric Gas C3F7CN. Phys. Chem. Chem. Phys. 2019, 21, 16451–16458. 10.1039/C9CP02188D. PubMed DOI

Wannier G. H. The Threshold Law for Single Ionization of Atoms or Ions by Electrons. Phys. Rev. 1953, 90, 817–825. 10.1103/PhysRev.90.817. DOI

Gnuplot: An Interactive Plotting Program, 2020. http://www.gnuplot.info/.

Solov’yov I. A.; Yakubovich A. V.; Nikolaev P. V.; Volkovets I.; Solov’yov A. V. MesoBioNano Explorer – A Universal Program for Multiscale Computer Simulations of Complex Molecular Structure and Dynamics. J. Comput. Chem. 2012, 33, 2412–2439. 10.1002/jcc.23086. PubMed DOI

Solov’yov I. A.; Korol A. V.; Solov’yov A. V.. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer; Springer International Publishing: Cham, Switzerland, 2017.

Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Modeling MesoBioNano Systems with MBN Studio Made Easy. J. Mol. Graph Model 2019, 88, 247–260. 10.1016/j.jmgm.2019.02.003. PubMed DOI

Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Molecular Dynamics for Irradiation Driven Chemistry: Application to the FEBID Process. Eur. Phys. J. D 2016, 70 (10), 217.10.1140/epjd/e2016-70283-5. DOI

Solov’yov I. A.; Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V.. Dynamics of Systems on the Nanoscale; Springer Nature: Cham, Switzerland, 2022.

Solov’yov A. V.; Verkhovtsev A. V.; Mason N. J.; Amos R. A.; Bald I.; Baldacchino G.; Dromey B.; Falk M.; Fedor J.; Gerhards L.; et al. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem. Rev. 2024, 124, 8014–8129. 10.1021/acs.chemrev.3c00902. PubMed DOI PMC

Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics: A Review. Eur. Phys. J. D 2021, 75 (7), 213.10.1140/epjd/s10053-021-00223-3. DOI

De Vera P.; Azzolini M.; Sushko G.; Abril I.; Garcia-Molina R.; Dapor M.; Solov’yov I. A.; Solov’yov A. V. Multiscale Simulation of the Focused Electron Beam Induced Deposition Process. Sci. Rep. 2020, 10 (1), 20827.10.1038/s41598-020-77120-z. PubMed DOI PMC

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics Simulation of the FEBID Process for Pt(PF3)4. Beilstein J. Nanotechnol. 2021, 12, 1151–1172. 10.3762/bjnano.12.86. PubMed DOI PMC

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Simulation of the FEBID-Driven Growth of Iron-Based Nanostructures. Phys. Chem. Chem. Phys. 2022, 24, 10807–10819. 10.1039/D2CP00809B. PubMed DOI

Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic modeling of thermal effects in focused electron beam-induced deposition of Me2Au(tfac). Eur. Phys. J. D 2023, 77 (1), 15.10.1140/epjd/s10053-023-00598-5. DOI

Landau L. D.; Lifshitz E. M.. Quantum Mechanics: non-Relativistic Theory; Elsevier: Oxford, 2013.

Sushko G. B.; Solov’yov I. A.; Verkhovtsev A. V.; Volkov S. N.; Solov’yov A. V. Studying Chemical Reactions in Biological Systems with MBN Explorer: Implementation of Molecular Mechanics with Dynamical Topology. Eur. Phys. J. D 2016, 70 (1), 12.10.1140/epjd/e2015-60424-9. DOI

De Vera P.; Verkhovtsev A.; Sushko G.; Solov’yov A. V. Reactive Molecular Dynamics Simulations of Organometallic Compound W(CO)6 fragmentation. Eur. Phys. J. D 2019, 73 (10), 215.10.1140/epjd/e2019-100232-9. DOI

Andreides B.; Verkhovtsev A. V.; Fedor J.; Solov’yov A. V. Role of the Molecular Environment in Quenching the Irradiation-Driven Fragmentation of Fe(CO)5: A Reactive Molecular Dynamics Study. J. Phys. Chem. A 2023, 127, 3757–3767. 10.1021/acs.jpca.2c08756. PubMed DOI PMC

Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V. Classical Molecular Dynamics Simulations of Fusion and Fragmentation in Fullerene-Fullerene Collisions. Eur. Phys. J. D 2017, 71 (8), 212.10.1140/epjd/e2017-80117-7. DOI

Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Modeling the Effect of Ion-induced Shock Waves and DNA Breakage with the Reactive CHARMM Force Field. J. Comput. Chem. 2020, 41, 2429–2439. 10.1002/jcc.26399. PubMed DOI

Friis I.; Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Lethal DNA Damage Caused by Ion-induced Shock Waves in Cells. Phys. Rev. E 2021, 104, 054408.10.1103/PhysRevE.104.054408. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H., et al.Gaussian 16, Revision B.01; Gaussian Inc.:Wallingford CT, 2016.

Becke A. D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI

Hay P. J.; Wadt W. R. Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. 10.1063/1.448799. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Lacko M.; Papp P.; Wnorowski K.; Matejčík Š. Electron-Induced Ionization and Dissociative Ionization of Iron Pentacarbonyl Molecules. Eur. Phys. J. D 2015, 69 (3), 84.10.1140/epjd/e2015-50721-8. DOI

Papp P.; Shchukin P.; Kočišek J.; Matejčík Š. Electron Ionization and Dissociation of Aliphatic Amino Acids. J. Chem. Phys. 2012, 137 (10), 105101.10.1063/1.4749244. PubMed DOI

Brites V.; Chambaud G.; Hochlaf M.; Kočišek J.; Cayao Diaz J. L.; Matejčík Š.; Krčma F. Ionic Chemistry of Tetravinylsilane Cation (TVS+) Formed by Electron Impact: Theory and Experiment. J. Phys. Chem. A 2009, 113, 6531–6536. 10.1021/jp901978j. PubMed DOI

Maclot S.; Lahl J.; Peschel J.; Wikmark H.; Rudawski P.; Brunner F.; Coudert-Alteirac H.; Indrajith S.; Huber B. A.; Díaz-Tendero S.; Aguirre N. F.; et al. Dissociation Dynamics of the Diamondoid Adamantane upon Photoionization by XUV Femtosecond Pulses. Sci. Rep. 2020, 10 (1), 2884.10.1038/s41598-020-59649-1. PubMed DOI PMC

Sedmidubská B.; Kočišek J. Interaction of Low-Energy Electrons with Radiosensitizers. Phys. Chem. Chem. Phys. 2024, 26, 9112–9136. 10.1039/D3CP06003A. PubMed DOI

Ptasińska S.; Denifl S.; Scheier P.; Märk T. D. Inelastic Electron Interaction (Attachment/Ionization) with Deoxyribose. J. Chem. Phys. 2004, 120, 8505–8511. 10.1063/1.1690231. PubMed DOI

van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. 10.1021/jp004368u. DOI

Senftle T. P.; Hong S.; Islam M. M.; Kylasa S. B.; Zheng Y.; Shin Y. K.; Junkermeier C.; Engel-Herbert R.; Janik M. J.; Aktulga H. M.; Verstraelen T.; et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. Npj Comput. Mater. 2016, 2 (1), 15011.10.1038/npjcompumats.2015.11. DOI

Shchygol G.; Yakovlev A.; Trnka T.; van Duin A. C. T.; Verstraelen T. ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights. J. Chem. Theory Comput. 2019, 15, 6799–6812. 10.1021/acs.jctc.9b00769. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...