Release of Neutrals in Electron-Induced Ligand Separation from MeCpPtMe3: Theory Meets Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39948485
PubMed Central
PMC11873943
DOI
10.1021/acs.jpca.4c08259
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The interest in the electron impact-induced ligand release from MeCpPtMe3 [trimethyl(methylcyclopentadienyl)platinum(IV)] is motivated by its widespread use as a precursor in focused electron and ion beam nanofabrication. By experimentally studying the electron impact dissociative ionization of MeCpPtMe3 under single-collision conditions, we have found that the removal of two methyl radicals is energetically more favorable than the removal of one radical and even energetically comparable to the nondissociative ionization of MeCpPtMe3. This observation is explained by the structural rearrangement of the MeCpPtMe3+ ion prior to dissociation, resulting in the removal of ethane instead of two methyl groups. This fragmentation pathway is computationally confirmed and studied by irradiation-driven molecular dynamics (IDMD) simulations. The formation of complex molecules in irradiation-induced molecular dissociation is a general phenomenon that can occur in various molecular systems. This study explains the puzzling results of previous experiments with MeCpPtMe3 molecules and highlights the use of the IDMD approach to describe radiation-induced chemical transformations in molecular systems.
Zobrazit více v PubMed
Utke I.; Moshkalev S.; Russell P.. Nanofabrication Using Focused Ion and Electron Beams; Oxford University Press: New York, 2012.
De Teresa J. M.Nanofabrication: Nanolithography Techniques and Their Applications; IOP Publishing Ltd: Bristol, 2020.
Utke I.; Hoffmann P.; Melngailis J. Gas-Assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. Technol. B 2008, 26, 1197–1276. 10.1116/1.2955728. DOI
Swiderek P.; Marbach H.; Hagen C. W. Chemistry for Electron-Induced Nanofabrication. Beilstein J. Nanotechnol. 2018, 9, 1317–1320. 10.3762/bjnano.9.124. PubMed DOI PMC
Barth S.; Huth M.; Jungwirth F. Precursors for Direct-Write Nanofabrication with Electrons. J. Mater. Chem. C 2020, 8, 15884–15919. 10.1039/D0TC03689G. DOI
Winkler R.; Fowlkes J. D.; Rack P. D.; Plank H. 3D Nanoprinting via Focused Electron Beams. J. Appl. Phys. 2019, 125 (21), 210901.10.1063/1.5092372. DOI
Huth M.; Porrati F.; Barth S. Living up to its Potential—Direct-Write Nanofabrication with Focused Electron Beams. J. Appl. Phys. 2021, 130 (17), 170901.10.1063/5.0064764. DOI
Utke I.; Swiderek P.; Höflich K.; Madajska K.; Jurczyk J.; Martinović P.; Szymańska I. B. Coordination and Organometallic Precursors of Group 10 and 11: Focused Electron Beam Induced Deposition of Metals and Insight Gained from Chemical Vapour Deposition, Atomic Layer Deposition, and Fundamental Surface and Gas Phase Studies. Coord. Chem. Rev. 2022, 458, 213851.10.1016/j.ccr.2021.213851. DOI
Botman A.; Mulders J. J. L.; Hagen C. W. Creating Pure Nanostructures From Electron-Beam-Induced Deposition Using Purification Techniques: A Technology Perspective. Nanotechnology 2009, 20, 372001.10.1088/0957-4484/20/37/372001. PubMed DOI
Warneke Z.; Rohdenburg M.; Warneke J.; Kopyra J.; Swiderek P. Electron-Driven and Thermal Chemistry During Water-Assisted Purification of Platinum Nanomaterials Generated by Electron Beam Induced Deposition. Beilstein J. Nanotechnol. 2018, 9, 77–90. 10.3762/bjnano.9.10. PubMed DOI PMC
Indrajith S.; Rousseau P.; Huber B. A.; Nicolafrancesco C.; Domaracka A.; Grygoryeva K.; Nag P.; Sedmidubská B.; Fedor J.; Kočišek J. Decomposition of Iron Pentacarbonyl Induced by Singly and Multiply Charged Ions and Implications for Focused Ion Beam-Induced Deposition. J. Phys. Chem. C 2019, 123, 10639–10645. 10.1021/acs.jpcc.9b00289. DOI
Engmann S.; Stano M.; Matejčík Š.; Ingólfsson O. Gas Phase Low Energy Electron Induced Decomposition of the Focused Electron Beam Induced Deposition (FEBID) Precursor Trimethyl (Methylcyclopentadienyl) Platinum(iv) (MeCpPtMe3). Phys. Chem. Chem. Phys. 2012, 14, 14611–14618. 10.1039/c2cp42637d. PubMed DOI
Wnuk J. D.; Gorham J. M.; Rosenberg S. G.; van Dorp W. F.; Madey T. E.; Hagen C. W.; Fairbrother D. H. Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem. C 2009, 113, 2487–2496. 10.1021/jp807824c. DOI
Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI
Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spectrom. Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI
Lyshchuk H.; Chaudhary A.; Luxford T. F. M.; Ranković M.; Kočišek J.; Fedor J.; McElwee-White L.; Nag P. Electron-Induced Ligand Loss from Iron Tetracarbonyl Methyl Acrylate. Beilstein J. Nanotechnol. 2024, 15, 797–807. 10.3762/bjnano.15.66. PubMed DOI PMC
Zawadzki M. Electron-Impact Ionization Cross Section of Formic Acid. Eur. Phys. J. D 2018, 72 (1), 12.10.1140/epjd/e2017-80540-8. DOI
Ranković M.; Chalabala J.; Zawadzki M.; Kočišek J.; Slavíček P.; Fedor J. Dissociative Ionization Dynamics of Dielectric Gas C3F7CN. Phys. Chem. Chem. Phys. 2019, 21, 16451–16458. 10.1039/C9CP02188D. PubMed DOI
Wannier G. H. The Threshold Law for Single Ionization of Atoms or Ions by Electrons. Phys. Rev. 1953, 90, 817–825. 10.1103/PhysRev.90.817. DOI
Gnuplot: An Interactive Plotting Program, 2020. http://www.gnuplot.info/.
Solov’yov I. A.; Yakubovich A. V.; Nikolaev P. V.; Volkovets I.; Solov’yov A. V. MesoBioNano Explorer – A Universal Program for Multiscale Computer Simulations of Complex Molecular Structure and Dynamics. J. Comput. Chem. 2012, 33, 2412–2439. 10.1002/jcc.23086. PubMed DOI
Solov’yov I. A.; Korol A. V.; Solov’yov A. V.. Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer; Springer International Publishing: Cham, Switzerland, 2017.
Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Modeling MesoBioNano Systems with MBN Studio Made Easy. J. Mol. Graph Model 2019, 88, 247–260. 10.1016/j.jmgm.2019.02.003. PubMed DOI
Sushko G. B.; Solov’yov I. A.; Solov’yov A. V. Molecular Dynamics for Irradiation Driven Chemistry: Application to the FEBID Process. Eur. Phys. J. D 2016, 70 (10), 217.10.1140/epjd/e2016-70283-5. DOI
Solov’yov I. A.; Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V.. Dynamics of Systems on the Nanoscale; Springer Nature: Cham, Switzerland, 2022.
Solov’yov A. V.; Verkhovtsev A. V.; Mason N. J.; Amos R. A.; Bald I.; Baldacchino G.; Dromey B.; Falk M.; Fedor J.; Gerhards L.; et al. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem. Rev. 2024, 124, 8014–8129. 10.1021/acs.chemrev.3c00902. PubMed DOI PMC
Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics: A Review. Eur. Phys. J. D 2021, 75 (7), 213.10.1140/epjd/s10053-021-00223-3. DOI
De Vera P.; Azzolini M.; Sushko G.; Abril I.; Garcia-Molina R.; Dapor M.; Solov’yov I. A.; Solov’yov A. V. Multiscale Simulation of the Focused Electron Beam Induced Deposition Process. Sci. Rep. 2020, 10 (1), 20827.10.1038/s41598-020-77120-z. PubMed DOI PMC
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Irradiation-Driven Molecular Dynamics Simulation of the FEBID Process for Pt(PF3)4. Beilstein J. Nanotechnol. 2021, 12, 1151–1172. 10.3762/bjnano.12.86. PubMed DOI PMC
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic Simulation of the FEBID-Driven Growth of Iron-Based Nanostructures. Phys. Chem. Chem. Phys. 2022, 24, 10807–10819. 10.1039/D2CP00809B. PubMed DOI
Prosvetov A.; Verkhovtsev A. V.; Sushko G.; Solov’yov A. V. Atomistic modeling of thermal effects in focused electron beam-induced deposition of Me2Au(tfac). Eur. Phys. J. D 2023, 77 (1), 15.10.1140/epjd/s10053-023-00598-5. DOI
Landau L. D.; Lifshitz E. M.. Quantum Mechanics: non-Relativistic Theory; Elsevier: Oxford, 2013.
Sushko G. B.; Solov’yov I. A.; Verkhovtsev A. V.; Volkov S. N.; Solov’yov A. V. Studying Chemical Reactions in Biological Systems with MBN Explorer: Implementation of Molecular Mechanics with Dynamical Topology. Eur. Phys. J. D 2016, 70 (1), 12.10.1140/epjd/e2015-60424-9. DOI
De Vera P.; Verkhovtsev A.; Sushko G.; Solov’yov A. V. Reactive Molecular Dynamics Simulations of Organometallic Compound W(CO)6 fragmentation. Eur. Phys. J. D 2019, 73 (10), 215.10.1140/epjd/e2019-100232-9. DOI
Andreides B.; Verkhovtsev A. V.; Fedor J.; Solov’yov A. V. Role of the Molecular Environment in Quenching the Irradiation-Driven Fragmentation of Fe(CO)5: A Reactive Molecular Dynamics Study. J. Phys. Chem. A 2023, 127, 3757–3767. 10.1021/acs.jpca.2c08756. PubMed DOI PMC
Verkhovtsev A. V.; Korol A. V.; Solov’yov A. V. Classical Molecular Dynamics Simulations of Fusion and Fragmentation in Fullerene-Fullerene Collisions. Eur. Phys. J. D 2017, 71 (8), 212.10.1140/epjd/e2017-80117-7. DOI
Friis I.; Verkhovtsev A.; Solov’yov I. A.; Solov’yov A. V. Modeling the Effect of Ion-induced Shock Waves and DNA Breakage with the Reactive CHARMM Force Field. J. Comput. Chem. 2020, 41, 2429–2439. 10.1002/jcc.26399. PubMed DOI
Friis I.; Verkhovtsev A. V.; Solov’yov I. A.; Solov’yov A. V. Lethal DNA Damage Caused by Ion-induced Shock Waves in Cells. Phys. Rev. E 2021, 104, 054408.10.1103/PhysRevE.104.054408. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H., et al.Gaussian 16, Revision B.01; Gaussian Inc.:Wallingford CT, 2016.
Becke A. D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI
Hay P. J.; Wadt W. R. Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. 10.1063/1.448799. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Lacko M.; Papp P.; Wnorowski K.; Matejčík Š. Electron-Induced Ionization and Dissociative Ionization of Iron Pentacarbonyl Molecules. Eur. Phys. J. D 2015, 69 (3), 84.10.1140/epjd/e2015-50721-8. DOI
Papp P.; Shchukin P.; Kočišek J.; Matejčík Š. Electron Ionization and Dissociation of Aliphatic Amino Acids. J. Chem. Phys. 2012, 137 (10), 105101.10.1063/1.4749244. PubMed DOI
Brites V.; Chambaud G.; Hochlaf M.; Kočišek J.; Cayao Diaz J. L.; Matejčík Š.; Krčma F. Ionic Chemistry of Tetravinylsilane Cation (TVS+) Formed by Electron Impact: Theory and Experiment. J. Phys. Chem. A 2009, 113, 6531–6536. 10.1021/jp901978j. PubMed DOI
Maclot S.; Lahl J.; Peschel J.; Wikmark H.; Rudawski P.; Brunner F.; Coudert-Alteirac H.; Indrajith S.; Huber B. A.; Díaz-Tendero S.; Aguirre N. F.; et al. Dissociation Dynamics of the Diamondoid Adamantane upon Photoionization by XUV Femtosecond Pulses. Sci. Rep. 2020, 10 (1), 2884.10.1038/s41598-020-59649-1. PubMed DOI PMC
Sedmidubská B.; Kočišek J. Interaction of Low-Energy Electrons with Radiosensitizers. Phys. Chem. Chem. Phys. 2024, 26, 9112–9136. 10.1039/D3CP06003A. PubMed DOI
Ptasińska S.; Denifl S.; Scheier P.; Märk T. D. Inelastic Electron Interaction (Attachment/Ionization) with Deoxyribose. J. Chem. Phys. 2004, 120, 8505–8511. 10.1063/1.1690231. PubMed DOI
van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. 10.1021/jp004368u. DOI
Senftle T. P.; Hong S.; Islam M. M.; Kylasa S. B.; Zheng Y.; Shin Y. K.; Junkermeier C.; Engel-Herbert R.; Janik M. J.; Aktulga H. M.; Verstraelen T.; et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. Npj Comput. Mater. 2016, 2 (1), 15011.10.1038/npjcompumats.2015.11. DOI
Shchygol G.; Yakovlev A.; Trnka T.; van Duin A. C. T.; Verstraelen T. ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights. J. Chem. Theory Comput. 2019, 15, 6799–6812. 10.1021/acs.jctc.9b00769. PubMed DOI