Electron-induced ligand loss from iron tetracarbonyl methyl acrylate
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38979527
PubMed Central
PMC11228821
DOI
10.3762/bjnano.15.66
Knihovny.cz E-zdroje
- Klíčová slova
- FEBID precursor, electron collision, focused electron beam-induced deposition (FEBID), iron tetracarbonyl methyl acrylate,
- Publikační typ
- časopisecké články MeSH
We probe the separation of ligands from iron tetracarbonyl methyl acrylate (Fe(CO)4(C4H6O2) or Fe(CO)4MA) induced by the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups and support the interpretation of data by quantum chemical calculations. This way, both the dissociative ionization and dissociative electron attachment fragmentation channels are characterized. Considerable differences in the degree of precursor fragmentation in these two channels are observed. Interesting differences also appear when this precursor is compared to structurally similar iron pentacarbonyl. The present findings shed light on the recent electron-induced chemistry of Fe(CO)4MA on a surface under ultrahigh vacuum.
Zobrazit více v PubMed
Utke I, Moshkalev S, Russell P, editors. Nanofabrication Using Focused Ion and Electron Beams. New York: Oxford University Press; 2011.
De Teresa J M, editor. Nanofabrication: Nanolithography Techniques and Their Applications. Bristol: IOP Publishing Ltd; 2020. DOI
Winkler R, Fowlkes J D, Rack P D, Plank H. J Appl Phys. 2019;125:210901. doi: 10.1063/1.5092372. DOI
Huth M, Porrati F, Barth S. J Appl Phys. 2021;130:170901. doi: 10.1063/5.0064764. DOI
Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I B. Coord Chem Rev. 2022;458:213851. doi: 10.1016/j.ccr.2021.213851. DOI
Thorman R M, Ragesh Kumar T P, Fairbrother D H, Ingólfsson O. Beilstein J Nanotechnol. 2015;6:1904–1926. doi: 10.3762/bjnano.6.194. PubMed DOI PMC
Utke I, Hoffmann P, Melngailis J. J Vac Sci Technol, B: Microelectron Nanometer Struct–Process, Meas, Phenom. 2008;26:1197–1276. doi: 10.1116/1.2955728. DOI
Boeckers H, Chaudhary A, Martinović P, Walker A V, McElwee-White L, Swiderek P. Beilstein J Nanotechnol. 2024;15:500–516. doi: 10.3762/bjnano.15.45. PubMed DOI PMC
De Teresa J M, Fernández-Pacheco A, Córdoba R, Serrano-Ramón L, Sangiao S, Ibarra M R. J Phys D: Appl Phys. 2016;49:243003. doi: 10.1088/0022-3727/49/24/243003. DOI
Lacko M, Papp P, Wnorowski K, Matejčík Š. Eur Phys J D. 2015;69:84. doi: 10.1140/epjd/e2015-50721-8. DOI
Allan M, Lacko M, Papp P, Matejčík Š, Zlatar M, Fabrikant I I, Kočišek J, Fedor J. Phys Chem Chem Phys. 2018;20:11692–11701. doi: 10.1039/c8cp01387j. PubMed DOI
Lengyel J, Papp P, Matejčík Š, Kočišek J, Fárník M, Fedor J. Beilstein J Nanotechnol. 2017;8:2200–2207. doi: 10.3762/bjnano.8.219. PubMed DOI PMC
Bilgilisoy E, Thorman R M, Barclay M S, Marbach H, Fairbrother D H. J Phys Chem C. 2021;125:17749–17760. doi: 10.1021/acs.jpcc.1c05826. DOI
Massey S, Bass A D, Sanche L. J Phys Chem C. 2015;119:12708–12719. doi: 10.1021/acs.jpcc.5b02684. DOI
Hauchard C, Rowntree P A. Can J Chem. 2011;89:1163–1173. doi: 10.1139/v11-073. DOI
Lengyel J, Kočišek J, Fárník M, Fedor J. J Phys Chem C. 2016;120(13):7397–7402. doi: 10.1021/acs.jpcc.6b00901. DOI
Lengyel J, Fedor J, Fárník M. J Phys Chem C. 2016;120(31):17810–17816. doi: 10.1021/acs.jpcc.6b05852. DOI
Lengyel J, Pysanenko A, Swiderek P, Heiz U, Fárník M, Fedor J. J Phys Chem A. 2021;125(9):1919–1926. doi: 10.1021/acs.jpca.1c00135. PubMed DOI
Indrajith S, Rousseau P, Huber B A, Nicolafrancesco C, Domaracka A, Grygoryeva K, Nag P, Sedmidubská B, Fedor J, Kočišek J. J Phys Chem C. 2019;123(16):10639–10645. doi: 10.1021/acs.jpcc.9b00289. DOI
Andreides B, Verkhovtsev A V, Fedor J, Solov’yov A V. J Phys Chem A. 2023;127(17):3757–3767. doi: 10.1021/acs.jpca.2c08756. PubMed DOI PMC
Weiss E, Stark K, Lancaster J E, Murdoch H D. Helv Chim Acta. 1963;46:288–297. doi: 10.1002/hlca.19630460128. DOI
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Phys Chem Chem Phys. 2021;23(5):3195–3213. doi: 10.1039/d0cp06127a. PubMed DOI
Fárník M, Lengyel J. Mass Spectrom Rev. 2018;37(5):630–651. doi: 10.1002/mas.21554. PubMed DOI
Luxford T F M, Kočišek J, Tiefenthaler L, Nag P. Eur Phys J D. 2021;75(8):230. doi: 10.1140/epjd/s10053-021-00246-w. DOI
Zawadzki M. Eur Phys J D. 2018;72(1):12. doi: 10.1140/epjd/e2017-80540-8. DOI
Ranković M, Chalabala J, Zawadzki M, Kočišek J, Slavíček P, Fedor J. Phys Chem Chem Phys. 2019;21:16451–16458. doi: 10.1039/c9cp02188d. PubMed DOI
Kočišek J, Grygoryeva K, Lengyel J, Fárník M, Fedor J. Eur Phys J D. 2016;70(4):98. doi: 10.1140/epjd/e2016-70074-0. DOI
Stepanović M, Pariat Y, Allan M. J Chem Phys. 1999;110:11376–11382. doi: 10.1063/1.479078. DOI
Langer J, Zawadzki M, Fárník M, Pinkas J, Fedor J, Kočišek J. Eur Phys J D. 2018;72:112. doi: 10.1140/epjd/e2018-80794-6. DOI
Gaussian 16. Wallingford, CT, USA: Gaussian, Inc.; 2016.
Becke A D. J Chem Phys. 1993;98:1372–1377. doi: 10.1063/1.464304. DOI
Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A, Mantzaris J. J Chem Phys. 1988;89(4):2193–2218. doi: 10.1063/1.455064. DOI
Petersson G A, Al-Laham M A. J Chem Phys. 1991;94(9):6081–6090. doi: 10.1063/1.460447. DOI
Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
NIST Chemistry webBook. [ Jun 18; 2024 ]. Available from: https://webbook.nist.gov/chemistry/ DOI
Grevels F-W, Schulz D, von Gustorf E K. Angew Chem, Int Ed Engl. 1974;13:534–536. doi: 10.1002/anie.197405341. DOI
Muhammad S, Moncho S, Li B, Kyran S J, Brothers E N, Darensbourg D J, Bengali A A. Inorg Chem. 2013;52:12655–12660. doi: 10.1021/ic401836n. PubMed DOI
Wei S, Castleman A W., Jr Int J Mass Spectrom Ion Processes. 1994;131:233–264. doi: 10.1016/0168-1176(93)03886-q. DOI
Boesl U. Mass Spectrom Rev. 2017;36:86–109. doi: 10.1002/mas.21520. PubMed DOI
Release of Neutrals in Electron-Induced Ligand Separation from MeCpPtMe3: Theory Meets Experiment