Phytochemicals from Indian Ethnomedicines: Promising Prospects for the Management of Oxidative Stress and Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34679741
PubMed Central
PMC8533600
DOI
10.3390/antiox10101606
PII: antiox10101606
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, cancer, ethnomedicine, oxidative stress, phytochemicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxygen is indispensable for most organisms on the earth because of its role in respiration. However, it is also associated with several unwanted effects which may sometimes prove fatal in the long run. Such effects are more evident in cells exposed to strong oxidants containing reactive oxygen species (ROS). The adverse outcomes of oxidative metabolism are referred to as oxidative stress, which is a staple theme in contemporary medical research. Oxidative stress leads to plasma membrane disruption through lipid peroxidation and has several other deleterious effects. A large body of literature suggests the involvement of ROS in cancer, ageing, and several other health hazards of the modern world. Plant-based cures for these conditions are desperately sought after as supposedly safer alternatives to mainstream medicines. Phytochemicals, which constitute a diverse group of plant-based substances with varying roles in oxidative reactions of the body, are implicated in the treatment of cancer, aging, and all other ROS-induced anomalies. This review presents a summary of important phytochemicals extracted from medicinal plants which are a part of Indian ethnomedicine and Ayurveda and describes their possible therapeutic significance.
Department of Applied Physics School of Science Aalto University 00076 Espoo Finland
Department of Chemistry Shia PG College Lucknow 226003 India
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Department of Zoology Shia PG College Lucknow 226003 India
Faculty of Medicine Bursa Uludağ University Görükle Campus Nilüfer Bursa 16059 Turkey
Institute of Biostructure and Bioimaging Molecular Biotechnology Center 10124 Turin Italy
Zobrazit více v PubMed
Croce C.M. Oncogenes and cancer. N. Engl. J. Med. 2008;358:502–511. doi: 10.1056/NEJMra072367. PubMed DOI
Wang L.H., Wu C.F., Rajasekaran N., Shin Y.K. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol. Biochem. 2018;51:2647–2693. doi: 10.1159/000495956. PubMed DOI
Bhattacharya S., Ghosh M.K. Cell death and deubiquitinases: Perspectives in cancer. BioMed Res. Int. 2014;2014:435197. doi: 10.1155/2014/435197. PubMed DOI PMC
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Goodman M. Managing the side effects of chemotherapy. Semin. Oncol. Nurs. 1989;5((Suppl. 2)):29–52. doi: 10.1016/0749-2081(89)90080-6. PubMed DOI
Di Gioia F., Tzortzakis N., Rouphael Y., Kyriacou M.C., Sampaio S.L., CFR Ferreira I., Petropoulos S.A. Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants. 2020;9:97. doi: 10.3390/antiox9020097. PubMed DOI PMC
Shin S.A., Moon S.Y., Kim W.Y., Paek S.M., Park H.H., Lee C.S. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int. J. Mol. Sci. 2018;19:2651. doi: 10.3390/ijms19092651. PubMed DOI PMC
Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC
Visconti R., Grieco D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Dev. 2009;12:240–245. PubMed
Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010;59:459–469. doi: 10.33549/physiolres.931844. PubMed DOI
Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC
Noda N., Wakasugi H. Cancer and oxidative stress. Jpn. Med. Assoc. J. 2001;44:535–539.
Sen S., Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med. 2017;7:234–244. doi: 10.1016/j.jtcme.2016.05.006. PubMed DOI PMC
Vaidya A.D., Devasagayam T.P. Current status of herbal drugs in India: An overview. J. Clin. Biochem. Nutr. 2007;41:1–11. doi: 10.3164/jcbn.2007001. PubMed DOI PMC
Samal J. Medicinal plants and related developments in India: A peep into 5-year plans of India. Indian J. Health Sci. Biomed. Res. (KLEU) 2016;9:14–19. doi: 10.4103/2349-5006.183698. DOI
Balachandran P., Govindarajan R. Cancer—An ayurvedic perspective. Pharmacol. Res. 2005;51:19–30. doi: 10.1016/j.phrs.2004.04.010. PubMed DOI
Hussein R., El-Anssary A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herb. Med. 2019;1:13.
Pan L., Chai H., Kinghorn A.D. The continuing search for antitumor agents from higher plants. Phytochem. Lett. 2010;3:1–8. doi: 10.1016/j.phytol.2009.11.005. PubMed DOI PMC
Ansari J.A., Rastogi N., Ahmad M.K., Mahdi A.A., Khan A.R., Thakur R., Srivastava V.K., Mishra D.P., Fatima N., Khan H.J., et al. ROS mediated pro-apoptotic effects of Tinospora cordifolia on breast cancer cells. Front. Biosci. (Elite Ed.) 2017;9:89–100. PubMed
Kumar B.R., Anupam A., Manchikanti P., Rameshbabu A.P., Dasgupta S., Dhara S. Identification and characterization of bioactive phenolic constituents, anti-proliferative, and anti-angiogenic activity of stem extracts of Basella alba and rubra. J. Food Sci. Technol. 2018;55:1675–1684. doi: 10.1007/s13197-018-3079-0. PubMed DOI PMC
Khan N., Tamboli E., Sharma V.K., Kumar S. Phytochemical and pharmacological aspects of Nothapodytes nimmoniana. An overview. Herba Pol. 2013;59:1. doi: 10.2478/hepo-2013-0006. DOI
Tran M.H., Nguyen H.D., Kim J.C., Choi J.S., Lee H.K., Min B.S. Phenolic glycosides from Alangium salviifolium leaves with inhibitory activity on LPS-induced NO, PGE(2), and TNF-alpha production. Bioorg. Med. Chem. Lett. 2009;19:4389–4393. PubMed
Gavande K., Jain K., Jain B., Mehta R. Comprehensive Report on Phytochemistry and Pharmacological Prominence of Withania somnifera. UK J. Pharm. Biosci. 2015;3:15. doi: 10.20510/ukjpb/3/i2/89342. DOI
Devanesan E.B., Anand A.V., Kumar P.S., Vinayagamoorthy P., Basavaraju P. Phytochemistry and Pharmacology of Ficus religiosa. Syst. Rev. Pharm. 2018;9:45–48. doi: 10.5530/srp.2018.1.9. DOI
Uddin N., Ali N., Uddin Z., Nazir N., Zahoor M., Rashid U., Ullah R., Alqahtani A.S., Alqahtani A.M., Nasr F.A., et al. Evaluation of Cholinesterase Inhibitory Potential of Different Genotypes of Ziziphus nummularia, Their HPLC-UV, and Molecular Docking Analysis. Molecules. 2020;25:5011. doi: 10.3390/molecules25215011. PubMed DOI PMC
Devi S., Rashid R., Kumar M. Phytochemistry and pharmacological properties of Phyllanthus amarus Schum: A review. Pharma Innov. J. 2017;6:169–172.
Jayakumar T., Hsieh C.Y., Lee J.J., Sheu J.R. Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid.-Based Complement. Altern. Med. eCAM. 2013;2013:846740. doi: 10.1155/2013/846740. PubMed DOI PMC
Pandey S., Phulara S.C., Mishra S.K., Bajpai R., Kumar A., Niranjan A., Lehri A., Upreti D.K., Chauhan P.S. Betula utilis extract prolongs life expectancy, protects against amyloid-β toxicity and reduces Alpha Synuclien in Caenorhabditis elegans via DAF-16 and SKN-1. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP. 2020;228:108647. doi: 10.1016/j.cbpc.2019.108647. PubMed DOI
Seemaisamy R., Faruck L.H., Gattu S., Neelamegam R., Bakshi H.A., Rashan L., Al-Buloshi M., Hasson S.S.A.A., Nagarajan K. Anti-Microbial and Anti-Cancer Activity of Aegle Marmelos and Gas Chromatography Coupled Spectrometry Analysis of Their Chemical Constituents. Int. J. Pharm. Sci. Res. 2019;10:373–380.
Prakash V., Jaiswal N., Srivastava M. A Review on Medicinal Properties of Centella Asiatica. Asian J. Pharm. Clin. Res. 2017;10:69–74. doi: 10.22159/ajpcr.2017.v10i10.20760. DOI
Jeyasri R., Muthuramalingam P., Suba V., Ramesh M., Chen J.T. Bacopa monnieri and Their Bioactive Compounds Inferred Multi-Target Treatment Strategy for Neurological Diseases: A Cheminformatics and System Pharmacology Approach. Biomolecules. 2020;10:536. doi: 10.3390/biom10040536. PubMed DOI PMC
Koczurkiewicz P., Łojewski M., Piska K., Michalik M., Wójcik-Pszczoła K., Szewczyk A., Hałaszuk P., Pękala E., Muszyńska B. Chemopreventive and Anticancer Activities of Bacopa monnieri Extracted from Artificial Digestive Juices. Nat. Prod. Commun. 2017;12:337–342. doi: 10.1177/1934578X1701200306. PubMed DOI
Aswal J., Dobhal R., Uniyal D.P., Nautiyal V. A review on Pharmacological potential of Berberine; an active component of Himalayan Berberis aristata. J. Phytopharmacol. 2017;6:53–58.
Al-Snafi A. Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium—A review. IOSR J. Pharm. 2017;7:43–58. doi: 10.9790/3013-0702014358. DOI
Okoro E.E., Osoniyi O.R., Jabeen A., Shams S., Choudhary M.I., Onajobi F.D. Anti-proliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L. Clin. Phytoscience. 2019;5:45. doi: 10.1186/s40816-019-0143-x. DOI
Tomeh M.A., Hadianamrei R., Zhao X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019;20:1033. doi: 10.3390/ijms20051033. PubMed DOI PMC
Rathinamoorthy R., Thilagavathi G. Terminalia chebula-review on pharmacological and biochemical studies. Int. J. Pharm.Tech. Res. 2014;6:97–116.
Fatima N., Ahmad M., Ansari J., Khan H., Rastogi N., Srivastava S., Ahmad S., Ali Z. Antiproliferative and Antioxidant Studies of Anthocephalus cadamba Rox. Miq. Bark. Indian J. Pharm. Sci. 2016;78:525–531. doi: 10.4172/pharmaceutical-sciences.1000147. DOI
Khan H.J., Ahmad M.K., Khan A.R., Rastogi N., Mahdi A.A., Ansari J.A., Fatima N., Satyanarayan G.N.V. Identification of Anticancer and Antioxidant phytoconstituents from chloroform fraction of Solanum nigrum L. berries using GC-MS/MS analysis. Indian J. Exp. Biol. 2016;54:774–782. PubMed
Pal P.K., Nandi M.K., Singh N.K. Detoxification of Croton tiglium L. seeds by Ayurvedic process of Śodhana. Anc. Sci. Life. 2014;33:157. PubMed PMC
Bukhari S.I., Manzoor M., Dhar M.K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed. Pharmacother. 2018;98:733–745. doi: 10.1016/j.biopha.2017.12.090. PubMed DOI
Coria-Téllez A.V., Montalvo-Gónzalez E., Yahia E.M., Obledo-Vázquez E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 2018;11:662–691. doi: 10.1016/j.arabjc.2016.01.004. DOI
El-Saber Batiha G., Alkazmi L.M., Wasef L.G., Beshbishy A.M., Nadwa E.H., Rashwan E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules. 2020;10:202. doi: 10.3390/biom10020202. PubMed DOI PMC
Braga T.M., Rocha L., Chung T.Y., Oliveira R.F., Pinho C., Oliveira A.I., Morgado J., Cruz A. Azadirachta indica A. Juss In Vivo Toxicity—An Updated Review. Molecules. 2021;26:252. doi: 10.3390/molecules26020252. PubMed DOI PMC
Chhikara N., Kour R., Jaglan S., Gupta P., Gat Y., Panghal A. Citrus medica: Nutritional, phytochemical composition and health benefits—A review. Food Funct. 2018;9:1978–1992. doi: 10.1039/C7FO02035J. PubMed DOI
Marrelli M., Amodeo V., Statti G., Conforti F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules. 2019;24:119. doi: 10.3390/molecules24010119. PubMed DOI PMC
Yadav V., Krishnan A., Vohora D. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. J. Ethnopharmacol. 2020;247:112255. doi: 10.1016/j.jep.2019.112255. PubMed DOI
Anirban C., Santanu P. A Review on Phytochemical and Pharmacological Potential of Alpinia galanga. Pharmacogn. J. 2018;10:9–15.
Alam K., Hoq O., Uddin S. Medicinal plant Allium sativum: A Review. J. Med. Plants Stud. 2016;4:72–79.
Zargar B.A., Masoodi M.H., Ahmed B., Ganie S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn. Food Chem. 2011;128:585–589. doi: 10.1016/j.foodchem.2011.03.083. DOI
Alok S., Jain S.K., Verma A., Kumar M., Mahor A., Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis. 2013;3:242–251. doi: 10.1016/S2222-1808(13)60049-3. DOI
Ansari J.A., Ahmad M.K., Khan A.R., Fatima N., Khan H.J., Rastogi N., Mishra D.P., Mahdi A.A. Anticancer and Antioxidant activity of Zingiber officinale Roscoe rhizome. Indian J. Exp. Biol. 2016;54:767–773. PubMed
Joshi R.K., Setzer W.N., Da Silva J.K. Phytoconstituents, traditional medicinal uses and bioactivities of Tulsi (Ocimum sanctum Linn.): A review. Am. J. Essent. Oils Nat. Prod. 2017;5:18–21.
Kami S.S., Hameed I.H., Hamza L.F. Acorus calamus: Parts used, insecticidal, anti-fungal, antitumour and anti-inflammatory activity: A review. Int. J. Pharm. Clin. Res. 2017;8:153–157.
Razack S., Kumar K.H., Nallamuthu I., Naika M., Khanum F. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS. Antioxidants. 2015;4:185–203. doi: 10.3390/antiox4010185. PubMed DOI PMC
Pandey M.M., Katara A., Pandey G., Rastogi S., Rawat A.K.S. An Important Indian Traditional Drug of Ayurveda Jatamansi and Its Substitute Bhootkeshi: Chemical Profiling and Antioxidant Activity. Evid.-Based Complement. Altern. Med. 2013;2013:142517. doi: 10.1155/2013/142517. PubMed DOI PMC
Dixit V., Jain P., Joshi S. Hypolipidaemic effects of Curcuma longa Linn., and Nardostachys jatamansi DC, in triton-induced hyperlipidaemic rats. Indian J. Physiol. Pharmacol. 1988;32:299–304. PubMed
Pillai D., Pandita N. Determination of Quality Standards for Draksharishta, a Polyherbal Ayurvedic Formulation. Indian J. Pharm. Sci. 2016;78:129–135. PubMed PMC
Sathiya M. Ph.D. Thesis. Madras Medical College; Chennai, India: 2017. Scientific Evaluation of Antioxidant and Anti Cancer Activity of Kanchanara Guggulu Vati by Invitro Methods.
Saraswathy A., Sundaresan R., Joy S., Gopal R.H. Effect of Container on Ayurvedic Drugs—A Select Study. Anc. Sci. Life. 2004;24:11. PubMed PMC
Peterson C.T., Denniston K., Chopra D. Therapeutic uses of triphala in ayurvedic medicine. J. Altern. Complement. Med. 2017;23:607–614. doi: 10.1089/acm.2017.0083. PubMed DOI PMC
Kotteswari M., Rao M., Kumar S., Prabhu K., Sundaram R.L., Dinakar S. GC MS Analysis of One Ayurvedic Preparation ‘Aswagandharishtam’. Biomed. Pharmacol. J. 2018;11:1061–1072. doi: 10.13005/bpj/1467. DOI
Patel V., Parmar N. A Comparative Clinical Study of Kasisadi Taila and Jatyadi Taila in the Management of Arsha. J. Ayurveda Holist. Med. 2017;5:16–24.
Jadhav A.N., Bhutani K. Ayurveda and gynecological disorders. J. Ethnopharmacol. 2005;97:151–159. doi: 10.1016/j.jep.2004.10.020. PubMed DOI
Govardhan B., Manjunatha A., Kumar S.S. Standardization of Lashuna taila: An ayurvedic oil based medicine. J Pharmacogn. Phytochem. 2018;7:28338.
Ferguson L.R., Chen H., Collins A.R., Connell M., Damia G., Dasgupta S., Malhotra M., Meeker A.K., Amedei A., Amin A., et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin. Cancer Biol. 2015;35:S5–S24. doi: 10.1016/j.semcancer.2015.03.005. PubMed DOI PMC
Forni C., Facchiano F., Bartoli M., Pieretti S., Facchiano A., D’Arcangelo D., Norelli S., Valle G., Nisini R., Beninati S., et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BioMed Res. Int. 2019;2019:8748253. doi: 10.1155/2019/8748253. PubMed DOI PMC
Zhang Y.-J., Gan R.-Y., Li S., Zhou Y., Li A.-N., Xu D.-P., Li H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015;20:21138–21156. doi: 10.3390/molecules201219753. PubMed DOI PMC
Mileo A.M., Miccadei S. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxidative Med. Cell. Longev. 2016;2016:6475624. doi: 10.1155/2016/6475624. PubMed DOI PMC
Choi D.G., Venkatesan J., Shim M.S. Selective Anticancer Therapy Using Pro-Oxidant Drug-Loaded Chitosan–Fucoidan Nanoparticles. Int. J. Mol. Sci. 2019;20:3220. doi: 10.3390/ijms20133220. PubMed DOI PMC
Kocyigit A., Guler E.M., Dikilitas M. Reactive Oxygen Species (ROS) in Living Cells. InterchOpen; London, UK: 2018. Role of antioxidant phytochemicals in prevention, formation and treatment of cancer; pp. 21–45.
Swallah M.S., Sun H., Affoh R., Fu H., Yu H. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits. Int. J. Food Sci. 2020;2020:9081686. doi: 10.1155/2020/9081686. PubMed DOI PMC
Giordano A., Tommonaro G. Curcumin and Cancer. Nutrients. 2019;11:2376. doi: 10.3390/nu11102376. PubMed DOI PMC
Shahidi F., Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods. 2015;18:820–897. doi: 10.1016/j.jff.2015.06.018. DOI
Vafadar A., Shabaninejad Z., Movahedpour A., Fallahi F., Taghavipour M., Ghasemi Y., Akbari M., Shafiee A., Hajighadimi S., Moradizarmehri S., et al. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10:32. doi: 10.1186/s13578-020-00397-0. PubMed DOI PMC
Batiha G.E.-S., Beshbishy A.M., Ikram M., Mulla Z.S., El-Hack M.E.A., Taha A.E., Algammal A.M., Elewa Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods. 2020;9:374. doi: 10.3390/foods9030374. PubMed DOI PMC
Sharmila G., Athirai T., Kiruthiga B., Senthilkumar K., Elumalai P., Arunkumar R., Arunakaran J. Chemopreventive effect of quercetin in MNU and testosterone induced prostate cancer of Sprague-Dawley rats. Nutr. Cancer. 2014;66:38–46. doi: 10.1080/01635581.2014.847967. PubMed DOI
Nair M.P., Mahajan S., Reynolds J.L., Aalinkeel R., Nair H., Schwartz S.A., Kandaswami C. The Flavonoid Quercetin Inhibits Proinflammatory Cytokine (Tumor Necrosis Factor Alpha) Gene Expression in Normal Peripheral Blood Mononuclear Cells via Modulation of the NF-κβ System. Clin. Vaccine Immunol. 2006;13:319–328. doi: 10.1128/CVI.13.3.319-328.2006. PubMed DOI PMC
Jing Z., Wang Z., Li X., Li X., Cao T., Bi Y., Zhou J., Chen X., Yu D., Zhu L., et al. Protective Effect of Quercetin on Posttraumatic Cardiac Injury. Sci. Rep. 2016;6:30812. doi: 10.1038/srep30812. PubMed DOI PMC
Vaid M., Katiyar S.K. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) Int. J. Oncol. 2010;36:1053–1060. PubMed PMC
Udenigwe C.C., Ramprasath V.R., Aluko R.E., Jones P.J. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev. 2008;66:445–454. doi: 10.1111/j.1753-4887.2008.00076.x. PubMed DOI
Storniolo C.E., Moreno J.J. Resveratrol Analogs with Antioxidant Activity Inhibit Intestinal Epithelial Cancer Caco-2 Cell Growth by Modulating Arachidonic Acid Cascade. J. Agric. Food Chem. 2019;67:819–828. doi: 10.1021/acs.jafc.8b05982. PubMed DOI
Gupta M., Panizai M., Tareen M.F., Ortega-Martinez S., Doreulee N. An Overview on Novel Antioxidant and Anti-cancer Properties of Lycopene: A Comprehensive Review. GMJ Med. 2018;2:45–50. doi: 10.29088/GMJM.2018.45. DOI
Palozza P., Serini S., Di Nicuolo F., Calviello G. Modulation of apoptotic signalling by carotenoids in cancer cells. Arch. Biochem. Biophys. 2004;430:104–109. doi: 10.1016/j.abb.2004.02.038. PubMed DOI
Mordi R.C., Ademosun O.T., Ajanaku C.O., Olanrewaju I.O., Walton J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules. 2020;25:1038. doi: 10.3390/molecules25051038. PubMed DOI PMC
Lamoral-Theys D., Pottier L., Dufrasne F., Nève J., Dubois J., Kornienko A., Kiss R., Ingrassia L. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr. Med. Chem. 2010;17:812–825. doi: 10.2174/092986710790712183. PubMed DOI
Anantharaju P.G., Gowda P.C., Vimalambike M.G., Madhunapantula S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016;15:99. doi: 10.1186/s12937-016-0217-2. PubMed DOI PMC
Shaito A., Posadino A.M., Younes N., Hasan H., Halabi S., Alhababi D., Al-Mohannadi A., Abdel-Rahman W.M., Eid A.H., Nasrallah G.K., et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020;21:2084. doi: 10.3390/ijms21062084. PubMed DOI PMC
Tuorkey M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci. 2014;6:139–146. doi: 10.1556/imas.6.2014.4.1. PubMed DOI PMC
Balasubramanian S., Eckert R.L. Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J. Biol. Chem. 2007;282:6707–6715. doi: 10.1074/jbc.M606003200. PubMed DOI
Ali B.H., Blunden G., Tanira M.O., Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008;46:409–420. doi: 10.1016/j.fct.2007.09.085. PubMed DOI
Mao Q.-Q., Xu X.-Y., Cao S.-Y., Gan R.-Y., Corke H., Beta T., Li H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods. 2019;8:185. doi: 10.3390/foods8060185. PubMed DOI PMC
De Lima R.M.T., Dos Reis A.C., de Menezes A.P.M., Santos J.V.O., Filho J., Ferreira J.R.O., de Alencar M., da Mata A., Khan I.N., Islam A., et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res. PTR. 2018;32:1885–1907. doi: 10.1002/ptr.6134. PubMed DOI
Ju J., Picinich S.C., Yang Z., Zhao Y., Suh N., Kong A.N., Yang C.S. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis. 2010;31:533–542. doi: 10.1093/carcin/bgp205. PubMed DOI PMC
Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life. 2019;71:495–506. doi: 10.1002/iub.1978. PubMed DOI
Ashoori M., Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014;111:1985–1991. doi: 10.1017/S0007114514000178. PubMed DOI
Sapio L., Salzillo A., Illiano M., Ragone A., Spina A., Chiosi E., Pacifico S., Catauro M., Naviglio S. Chlorogenic acid activates ERK1/2 and inhibits proliferation of osteosarcoma cells. J. Cell. Physiol. 2020;235:3741–3752. doi: 10.1002/jcp.29269. PubMed DOI
Chen L., Guo X., Hu Y., Li L., Liang G., Zhang G. Epigallocatechin-3-gallate sensitises multidrug-resistant oral carcinoma xenografts to vincristine sulfate. FEBS Open Bio. 2020;10:1403–1413. doi: 10.1002/2211-5463.12905. PubMed DOI PMC
Ji Z., Huo C., Yang P. Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: Role of abnormal apoptosis. Int. Urol. Nephrol. 2020;52:1049–1055. doi: 10.1007/s11255-019-02372-2. PubMed DOI
Tian X., Zhang S., Zhang Q., Kang L., Ma C., Feng L., Li S., Li J., Yang L., Liu J., et al. Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma. J. Nutr. Biochem. 2020;85:108489. doi: 10.1016/j.jnutbio.2020.108489. PubMed DOI
Soll F., Ternent C., Berry I.M., Kumari D., Moore T.C. Quercetin Inhibits Proliferation and Induces Apoptosis of B16 Melanoma Cells In Vitro. Assay Drug Dev. Technol. 2020;18:261–268. doi: 10.1089/adt.2020.993. PubMed DOI
Salama A.A.A., Allam R.M. Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. Eur. J. Pharmacol. 2021;892:173763. doi: 10.1016/j.ejphar.2020.173763. PubMed DOI
Jang Y.G., Ko E.B., Choi K.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 2020;84:108444. doi: 10.1016/j.jnutbio.2020.108444. PubMed DOI
Habli Z., Toumieh G., Fatfat M., Rahal O.N., Gali-Muhtasib H. Emerging Cytotoxic Alkaloids in the Battle against Cancer: Overview of Molecular Mechanisms. Molecules. 2017;22:250. doi: 10.3390/molecules22020250. PubMed DOI PMC
Srivastava S., Rawat A.K. Quality evaluation of ayurvedic crude drug daruharidra, its allied species, and commercial samples from herbal drug markets of India. Evid.-Based Complement. Altern. Med. eCAM. 2013;2013:472973. doi: 10.1155/2013/472973. PubMed DOI PMC
Liu B., Li W., Chang Y., Dong W., Ni L. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction. J. Pharm. Biomed. Anal. 2006;41:1056–1060. doi: 10.1016/j.jpba.2006.01.034. PubMed DOI
Singh R.K., Ranjan A., Srivastava A.K., Singh M., Shukla A.K., Atri N., Mishra A., Singh A.K., Singh S.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells. J. Ayurveda Integr. Med. 2020;11:383–390. doi: 10.1016/j.jaim.2018.12.005. PubMed DOI PMC
Harmon A.D., Weiss U., Silverton J. The structure of rohitukine, the main alkaloid of Amoora rohituka (syn. Aphanamixis polystachya)(Meliaceae) Tetrahedron Lett. 1979;20:721–724. doi: 10.1016/S0040-4039(01)93556-7. DOI
Isah T. Anticancer Alkaloids from Trees: Development into Drugs. Pharmacogn. Rev. 2016;10:90–99. doi: 10.4103/0973-7847.194047. PubMed DOI PMC
Mahajan V., Sharma N., Kumar S., Bhardwaj V., Ali A., Khajuria R.K., Bedi Y.S., Vishwakarma R.A., Gandhi S.G. Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: An alternate renewable resource. Pharm. Biol. 2015;53:446–450. doi: 10.3109/13880209.2014.923006. PubMed DOI
Saisomboon S., Kariya R., Vaeteewoottacharn K., Wongkham S., Sawanyawisuth K., Okada S. Antitumor effects of flavopiridol, a cyclin-dependent kinase inhibitor, on human cholangiocarcinoma in vitro and in an in vivo xenograft model. Heliyon. 2019;5:e01675. doi: 10.1016/j.heliyon.2019.e01675. PubMed DOI PMC
Wiernik P.H. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin. Investig. Drugs. 2016;25:729–734. doi: 10.1517/13543784.2016.1169273. PubMed DOI
Safia, Kamil M., Jadiya P., Sheikh S., Haque E., Nazir A., Lakshmi V., Mir S.S. The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway. PLoS ONE. 2015;10:e0137991. doi: 10.1371/journal.pone.0137991. PubMed DOI PMC
Liu Y., Hua W., Li Y., Xian X., Zhao Z., Liu C., Zou J., Li J., Fang X., Zhu Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem. Pharmacol. 2020;174:113776. doi: 10.1016/j.bcp.2019.113776. PubMed DOI
Mohammadlou M., Abdollahi M., Hemati M., Baharlou R., Doulabi E.M., Pashaei M., Ghahremanfard F., Faranoush M., Kokhaei P. Apoptotic effect of berberine via Bcl-2, ROR1, and mir-21 in patients with B-chronic lymphocytic leukemia. Phytother. Res. PTR. 2021;35:2025–2033. doi: 10.1002/ptr.6945. PubMed DOI
Zhu M., Yu X., Zheng Z., Huang J., Yang X., Shi H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytother. Res. PTR. 2020;34:817–824. doi: 10.1002/ptr.6563. PubMed DOI
Yoo E.S., Choo G.S., Kim S.H., Woo J.S., Kim H.J., Park Y.S., Kim B.S., Kim S.K., Park B.K., Cho S.D., et al. Antitumor and Apoptosis-inducing Effects of Piperine on Human Melanoma Cells. Anticancer. Res. 2019;39:1883–1892. doi: 10.21873/anticanres.13296. PubMed DOI
Akhtar S., Achkar I.W., Siveen K.S., Kuttikrishnan S., Prabhu K.S., Khan A.Q., Ahmed E.I., Sahir F., Jerobin J., Raza A., et al. Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling. Front. Oncol. 2019;9:285. doi: 10.3389/fonc.2019.00285. PubMed DOI PMC
Wang C.H., Yang J.M., Guo Y.B., Shen J., Pei X.H. Anticancer Activity of Tetrandrine by Inducing Apoptosis in Human Breast Cancer Cell Line MDA-MB-231 In Vivo. Evid.-Based Complementary Altern. Med. eCAM. 2020;2020:6823520. PubMed PMC
Bhagya N., Chandrashekar K.R., Prabhu A., Rekha P.D. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell. Dev. Biol. Anim. 2019;55:331–340. PubMed
Portenoy R.K. Opioid therapy for chronic nonmalignant pain: A review of the critical issues. J. Pain Symptom Manag. 1996;11:203–217. doi: 10.1016/0885-3924(95)00187-5. PubMed DOI
Practice guidelines for chronic pain management. A report by the American Society of Anesthesiologists Task Force on Pain Management, Chronic Pain Section. Anesthesiology. 1997;86:995–1004. PubMed
Gutstein H., Akil H. Opioid Analgesics in the Pharmacological Basis of Therapeutics. McGraw-Hill; New York, NY, USA: 2001.
Boeing H., Bechthold A., Bub A., Ellinger S., Haller D., Kroke A., Leschik-Bonnet E., Müller M.J., Oberritter H., Schulze M., et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012;51:637–663. doi: 10.1007/s00394-012-0380-y. PubMed DOI PMC
Corzo-Martínez M., Corzo N., Villamiel M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007;18:609–625. doi: 10.1016/j.tifs.2007.07.011. DOI
Goncharov N., Belinskaia D., Ukolov A., Jenkins R., Avdonin P. Organosulfur Compounds as Nutraceuticals. Academic Press; New York, NY, USA: 2021. pp. 911–924.
Farhat Z., Hershberger P.A., Freudenheim J.L., Mammen M.J., Hageman Blair R., Aga D.S., Mu L. Types of garlic and their anticancer and antioxidant activity: A review of the epidemiologic and experimental evidence. Eur. J. Nutr. 2021;60:3585–3609. doi: 10.1007/s00394-021-02482-7. PubMed DOI
Joshi V., Joshi A. Garlic in Traditional Indian Medicine (Ayurveda) for Health and Healing. IntechOpen; London, UK: 2021. PubMed DOI
Rosas-González V.C., Téllez-Bañuelos M.C., Hernández-Flores G., Bravo-Cuellar A., Aguilar-Lemarroy A., Jave-Suárez L.F., Haramati J., Solorzano-Ibarra F., Ortiz-Lazareno P.C. Differential effects of alliin and allicin on apoptosis and senescence in luminal A and triple-negative breast cancer: Caspase, ΔΨm, and pro-apoptotic gene involvement. Fundam. Clin. Pharmacol. 2020;34:671–686. doi: 10.1111/fcp.12559. PubMed DOI
Li C., Jing H., Ma G., Liang P. Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells. Mol. Med. Rep. 2018;17:5976–5981. doi: 10.3892/mmr.2018.8552. PubMed DOI
Miękus N., Marszałek K., Podlacha M., Iqbal A., Puchalski C., Świergiel A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 2020;25:3804. doi: 10.3390/molecules25173804. PubMed DOI PMC
Das A., Banik N.L., Ray S.K. Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer. 2007;110:1083–1095. doi: 10.1002/cncr.22888. PubMed DOI
Wang H.C., Yang J.H., Hsieh S.C., Sheen L.Y. Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. J. Agric. Food Chem. 2010;58:7096–7103. doi: 10.1021/jf100613x. PubMed DOI
Kanamori Y., Via L.D., Macone A., Canettieri G., Greco A., Toninello A., Agostinelli E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp. Ther. Med. 2020;19:1511–1521. doi: 10.3892/etm.2019.8383. PubMed DOI PMC
Khan F., Pandey P., Mishra R., Arif M., Kumar A., Jafri A., Mazumder R. Elucidation of S-Allylcysteine Role in Inducing Apoptosis by Inhibiting PD-L1 Expression in Human Lung Cancer Cells. Anti-Cancer Agents Med. Chem. 2021;21:532–541. doi: 10.2174/1871520620666200728121929. PubMed DOI
Jobani B.M., Najafzadeh N., Mazani M., Arzanlou M., Vardin M.M. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44(+) versus CD117(+) melanoma cells. Phytomed. Int. J. Phytother. Phytopharm. 2018;48:161–169. doi: 10.1016/j.phymed.2018.05.013. PubMed DOI
Chen H., Zhu B., Zhao L., Liu Y., Zhao F., Feng J., Jin Y., Sun J., Geng R., Wei Y. Allicin Inhibits Proliferation and Invasion in Vitro and in Vivo via SHP-1-Mediated STAT3 Signaling in Cholangiocarcinoma. Cell. Physiol. Biochem. 2018;47:641–653. doi: 10.1159/000490019. PubMed DOI
Wang K., Wang Y., Qi Q., Zhang F., Zhang Y., Zhu X., Liu G., Luan Y., Zhao Z., Cai J., et al. Inhibitory effects of S-allylmercaptocysteine against benzo(a)pyrene-induced precancerous carcinogenesis in human lung cells. Int. Immunopharmacol. 2016;34:37–43. doi: 10.1016/j.intimp.2016.02.017. PubMed DOI
Iida Y., Okamoto-Katsuyama M., Maruoka S., Mizumura K., Shimizu T., Shikano S., Hikichi M., Takahashi M., Tsuya K., Okamoto S., et al. Effective ferroptotic small-cell lung cancer cell death from SLC7A11 inhibition by sulforaphane. Oncol. Lett. 2021;21:71. doi: 10.3892/ol.2020.12332. PubMed DOI PMC
Fernandes A.S., do Nascimento T.C., Jacob-Lopes E., De Rosso V.V., Zepka L.Q. Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. In: Zepka L., Jacob-Lopes E., De Rosso V.V., editors. Progress in Carotenoid Research. IntechOpen; London, UK: 2018. pp. 1–15. DOI
Giuliano G., Al-Babili S., von Lintig J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 2003;8:145–149. doi: 10.1016/S1360-1385(03)00053-0. PubMed DOI
Young A.J., Lowe G.L. Carotenoids—Antioxidant properties. Antioxidants. 2018;7:28. doi: 10.3390/antiox7020028. PubMed DOI PMC
Ramel F., Birtic S., Cuiné S., Triantaphylidès C., Ravanat J.-L., Havaux M. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol. 2012;158:1267–1278. doi: 10.1104/pp.111.182394. PubMed DOI PMC
Black H.S., Boehm F., Edge R., Truscott T.G. The Benefits and Risks of Certain Dietary Carotenoids that Exhibit both Anti- and Pro-Oxidative Mechanisms—A Comprehensive Review. Antioxidants. 2020;9:264. doi: 10.3390/antiox9030264. PubMed DOI PMC
Niranjana R., Gayathri R., Nimish Mol S., Sugawara T., Hirata T., Miyashita K., Ganesan P. Carotenoids modulate the hallmarks of cancer cells. J. Funct. Foods. 2015;18:968–985. doi: 10.1016/j.jff.2014.10.017. DOI
Toti E., Chen C.O., Palmery M., Villaño Valencia D., Peluso I. Non-Provitamin A and Provitamin A Carotenoids as Immunomodulators: Recommended Dietary Allowance, Therapeutic Index, or Personalized Nutrition? Oxidative Med. Cell. Longev. 2018;2018:4637861. doi: 10.1155/2018/4637861. PubMed DOI PMC
IARC Working Group on the Evaluation of Cancer-Preventive Agents . IARC Handbooks of Cancer Prevention: Carotenoids. IARC; Lyon, France: 1998.
Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Valanis B., Williams J.H., et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996;334:1150–1155. doi: 10.1056/NEJM199605023341802. PubMed DOI
Sathasivam R., Ki J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Marine Drugs. 2018;16:26. doi: 10.3390/md16010026. PubMed DOI PMC
Takata Y., Xiang Y.-B., Yang G., Li H., Gao J., Cai H., Gao Y.-T., Zheng W., Shu X.-O. Intakes of fruits, vegetables, and related vitamins and lung cancer risk: Results from the Shanghai Men’s Health Study (2002–2009) Nutr. Cancer. 2013;65:51–61. doi: 10.1080/01635581.2013.741757. PubMed DOI PMC
Tanaka T., Shnimizu M., Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17:3202–3242. doi: 10.3390/molecules17033202. PubMed DOI PMC
Liu Y.Z., Yang C.M., Chen J.Y., Liao J.W., Hu M.L. Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. J. Nutr. Biochem. 2015;26:607–615. doi: 10.1016/j.jnutbio.2014.12.012. PubMed DOI
Kim D., Lim J.W., Kim H. β-carotene Inhibits Expression of c-Myc and Cyclin E in Helicobacter pylori-infected Gastric Epithelial Cells. J. Cancer Prev. 2019;24:192–196. doi: 10.15430/JCP.2019.24.3.192. PubMed DOI PMC
Cui L., Xu F., Wu K., Li L., Qiao T., Li Z., Chen T., Sun C. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ1. Eur. J. Pharmacol. 2020;881:173230. doi: 10.1016/j.ejphar.2020.173230. PubMed DOI
Aktepe O.H., Şahin T.K., Güner G., Arik Z., Yalçin Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor- kappa B (NF-κB) pathway. Turk. J. Med. Sci. 2021;51:368–374. PubMed PMC
Gansukh E., Mya K.K., Jung M., Keum Y.-S., Kim D.H., Saini R.K. Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food Chem. Toxicol. 2019;127:11–18. doi: 10.1016/j.fct.2019.02.037. PubMed DOI
Sheng Y.-N., Luo Y.-H., Liu S.-B., Xu W.-T., Zhang Y., Zhang T., Xue H., Zuo W.-B., Li Y.-N., Wang C.-Y., et al. Zeaxanthin Induces Apoptosis via ROS-Regulated MAPK and AKT Signaling Pathway in Human Gastric Cancer Cells. Onco Targets Ther. 2020;13:10995–11006. doi: 10.2147/OTT.S272514. PubMed DOI PMC
Gansukh E., Nile A., Sivanesan I., Rengasamy K.R.R., Kim D.-H., Keum Y.-S., Saini R.K. Chemopreventive Effect of β-Cryptoxanthin on Human Cervical Carcinoma (HeLa) Cells Is Modulated through Oxidative Stress-Induced Apoptosis. Antioxidants. 2020;9:28. doi: 10.3390/antiox9010028. PubMed DOI PMC
Wu H.L., Fu X.Y., Cao W.Q., Xiang W.Z., Hou Y.J., Ma J.K., Wang Y., Fan C.D. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways. J. Agric. Food Chem. 2019;67:2212–2219. doi: 10.1021/acs.jafc.8b07126. PubMed DOI
Shukla M., Varalakshmi K.N. Apoptosis induction in cancer cell lines by the carotenoid Fucoxanthinol from Pseudomonas stutzeri JGI 52. Indian J. Pharmacol. 2018;50:116. PubMed PMC
Abd-Elbaset M., Mansour A.M., Ahmed O.M., Abo-Youssef A.M. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:1611–1624. doi: 10.1007/s00210-020-01863-9. PubMed DOI
Li S., Qu Y., Shen X.Y., Ouyang T., Fu W.B., Luo T., Wang H.Q. Multiple Signal Pathways Involved in Crocetin-Induced Apoptosis in KYSE-150 Cells. Pharmacology. 2019;103:263–272. doi: 10.1159/000487956. PubMed DOI
Hire R.R., Srivastava S., Davis M.B., Kumar Konreddy A., Panda D. Antiproliferative Activity of Crocin Involves Targeting of Microtubules in Breast Cancer Cells. Sci. Rep. 2017;7:44984. doi: 10.1038/srep44984. PubMed DOI PMC
Yu L., Li J., Xiao M. Picrocrocin exhibits growth inhibitory effects against SKMEL- 2 human malignant melanoma cells by targeting JAK/ STAT5 signaling pathway, cell cycle arrest and mitochondrial mediated apoptosis. J. B.U.ON. Off. J. Balk. Union Oncol. 2018;23:1163–1168. PubMed
De Oliveira Júnior R.G., Bonnet A., Braconnier E., Groult H., Prunier G., Beaugeard L., Grougnet R., da Silva Almeida J.R.G., Ferraz C.A.A., Picot L. Bixin, an apocarotenoid isolated from Bixa orellana L., sensitizes human melanoma cells to dacarbazine-induced apoptosis through ROS-mediated cytotoxicity. Food Chem. Toxicol. 2019;125:549–561. doi: 10.1016/j.fct.2019.02.013. PubMed DOI
Posadzki P., Watson L.K., Ernst E. Adverse effects of herbal medicines: An overview of systematic reviews. Clin. Med. 2013;13:7–12. doi: 10.7861/clinmedicine.13-1-7. PubMed DOI PMC