Differential Activity of Antioxidants in Testicular Tissues Following Administration of Chlorophytum borivilianum in Gamma-Irradiated Swiss Albino Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35111049
PubMed Central
PMC8802459
DOI
10.3389/fphar.2021.774444
PII: 774444
Knihovny.cz E-zdroje
- Klíčová slova
- C. borivilianum, catalase, glutathione, glutathione-s-transferase, irradiation, oxidative stress, testicular tissue,
- Publikační typ
- časopisecké články MeSH
Background: Oxidative stress induced by radiation causes variable expression of antioxidant enzymes in a tissue-specific manner. Testicular tissues carry out the complex process of spermatogenesis, and studies indicate that testicular damages due to irradiation require long-term recovery before complete resumption. Ionizing radiation also causes oxidative stress in tissues, leading to testicular damage. Aims and Objectives: This study measured differential expression of antioxidant enzymes following administration of C. borivilianum root extract (CRB) in response to irradiation-induced oxidative stress. The activity of various important endogenous enzymatic defense systems was evaluated and correlated for strength of association. Materials and method: Two forms of C. borivilianum (CB) extracts [CB alone and CB-silver nanoparticles (AgNPs)] were administered at a dose of 50 mg/kg body weight to Swiss albino male mice for 7 consecutive days. After that, they were irradiated with 6 Gy irradiation and further used to study various parameters of antioxidant enzymes. Results: Results indicate a significant increase in the level of glutathione (GSH) and the activity of GSH-related antioxidant enzymes in irradiated mice treated with CRE and CRE-AgNPs (silver nanoparticles biosynthesized using C. borivilianum root extract) in comparison to non-pretreated ones (groups I and II). Reciprocal elevation was observed in related enzymes, that is, glutathione S-transferase activity (GST), glutathione reductase (GR), and glutathione peroxidase activity (GPx). Elevation in the activity of catalase (CAT) and superoxide dismutase (SOD) was also evident in both the irradiated groups pretreated with CRE-AgNPs. However, expression of CAT in the CRE-treated irradiated group was similar to that of the non-treated irradiated group. Higher association among CAT-SOD, CAT-GPx, and GR-GST was observed. Conclusion: Overall, it was observed that testicular cells post-irradiation in all groups go through intense oxidative stress; however, groups pretreated with CRE or CRE-AgNPs indicated better toleration and resumption of antioxidant capacity. CRE or CRE-AgNPs pretreated non-irradiated groups mostly remained within the control range indicating stimulated expression of antioxidants.
Department of Applied Physics School of Science Aalto University Espoo Finland
Department of Life Science and Bioinformatics Assam University Silchar India
Department of Zoology S S Jain Subodh PG College Jaipur India
Zobrazit více v PubMed
Aebi H. (1974). in Catalase in Bergmeyer Hans UlrichMethods of Enzymatic Analysis. 5th Edition (New York, USA: Academic Press Incorporated; ), 273–278. 9780323161374. eBook ISBN:.
Ajith Y., Dimri U., Dixit S. K., Singh S. K., Gopalakrishnan A., Madhesh E., et al. (2017). Immunomodulatory Basis of Antioxidant Therapy and its Future Prospects: an Appraisal. Inflammopharmacol 25, 487–498. 10.1007/s10787-017-0393-5 PubMed DOI
Bentzen S. M. (2006). Preventing or Reducing Late Side Effects of Radiation Therapy: Radiobiology Meets Molecular Pathology. Nat. Rev. Cancer 6 (9), 702–713. 10.1038/nrc1950 PubMed DOI
Beutler E., West C. (1984). Simplified Determination of Carboxyhemoglobin. Clin. Chem. 30 (6), 871–874. PubMed
Bhabak K. P., Mugesh G. (2010). Functional Mimics of Glutathione Peroxidase: Bioinspired Synthetic Antioxidants. Acc. Chem. Res. 43 (11), 1408–1419. 10.1021/ar100059g PubMed DOI
Borek C. (2004). Antioxidants and Radiation Therapy. J. Nutr. 134 (11), 3207S–3209S. 10.1093/jn/134.11.3207S PubMed DOI
Bradford M. M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248–254. 10.1006/abio.1976.9999 PubMed DOI
Bump E. A., Brown J. M. (1990). Role of Glutathione in the Radiation Response of Mammalian Cells In Vitro and In Vivo . Pharmacol. Ther. 47, 117–136. 10.1016/0163-7258(90)90048-7 PubMed DOI
Cavaillon J. M. (2018). Exotoxins and Endotoxins: Inducers of Inflammatory Cytokines. Toxicon 149, 45–53. 10.1016/j.toxicon.2017.10.016 PubMed DOI
Christensen L., Vivekanandhan S., Misra M., Kumar Mohanty A. (2011). Biosynthesis of Silver Nanoparticles Using Murraya Koenigii (Curry Leaf): an Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size. Adv. Mater. Lett. 2 (6), 429–434. 10.5185/amLett.2011.4256 DOI
Ctrdmdp (2011). Committee on Tracking Radiation Doses from Medical Diagnostic Procedures; Nuclear and Radiation Studies Board; Division on Earth and Life Studies. T. Washington (DC): National Academies Press. PubMed
Datta K., Suman S., Kallakury B. V., Fornace A. J., Jr (2012). Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine. PLoS One 7 (8), e42224. 10.1371/journal.pone.0042224 PubMed DOI PMC
Datta K., Suman S., Kallakury B. V., Fornace A. J., Jr (2012). Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine. PLoS ONE 7 (8), e42224. 10.1371/journal.pone.0042224 PubMed DOI PMC
Deponte M. (2013). Glutathione Catalysis and the Reaction Mechanisms of Glutathione-dependent Enzymes. Biochim. Biophys. Acta 1830 (5), 3217–3266. 10.1016/j.bbagen.2012.09.018 PubMed DOI
Devi P., Singh M., Somagond Y. M., Aggarwal A. (2021). Alleviation of Heat Stress by Chlorophytum Borivilianum: Impact on Stress Markers, Antioxidant, and Immune Status in Crossbred Cows. Trop. Anim. Health Prod. 53, 351. 10.1007/s11250-021-02796-y PubMed DOI
Dowlath M. J. H., Karuppannan S. K., Sinha P., Dowlath N. S., Arunachalam K. D., Ravindran B., et al. (2021). Effects of Radiation and Role of Plants in Radioprotection: A Critical Review. Sci. Total Environ. 779146431, 146431. 10.1016/j.scitotenv.2021.146431 PubMed DOI
Fatima N., Baqri S. S. R., Alsulimani A., Fagoonee S., Slama P., Kesari K. K., et al. (2021). Phytochemicals from Indian Ethnomedicines: Promising Prospects for the Management of Oxidative Stress and Cancer. Antioxidants (Basel) 10 (10), 1606. 10.3390/antiox10101606 PubMed DOI PMC
Fisher-Wellman K., Bell H. K., Bloomer R. J. (2009). Oxidative Stress and Antioxidant Defense Mechanisms Linked to Exercise during Cardiopulmonary and Metabolic Disorders. Oxid Med. Cel Longev 2, 43–51. 10.4161/oxim.2.1.7732 PubMed DOI PMC
Fuks Z., Alfieri A., Haimovitz-Friedman A., Seddon A., Cordon-Cardo C. (1995). Intravenous Basic Fibroblast Growth Factor Protects the Lung but Not Mediastinal Organs against Radiation-Induced Apoptosis In Vivo . Cancer J. Sci. Am. 1 (1), 62–72. PubMed
Giacco F., Brownlee M. (2010). Oxidative Stress and Diabetic Complications. Circ. Res. 107 (9), 1058–1070. 10.1161/CIRCRESAHA.110.223545 PubMed DOI PMC
Giribabu N., Kumar K. E., Rekha S. S., Muniandy S., Salleh N. (2014). Chlorophytum Borivilianum (Safed Musli) Root Extract Prevents Impairment in Characteristics and Elevation of Oxidative Stress in Sperm of Streptozotocin-Induced Adult Male Diabetic Wistar Rats. BMC Complement. Altern. Med. 14, 291. 10.1186/1472-6882-14-291 PubMed DOI PMC
G. J., Fukumoto R., V. N. (2012). Lipid Peroxidation after Ionizing Irradiation Leads to Apoptosis and Autophagy. Lipid Peroxidation, Angel Catala, IntechOpen. 1. 1. 10.5772/48189 DOI
Govaerts R. (1999). World Checklist of Seed Plants. Deurne: MIM. 3 (1, 2a, 2b), 1–1532.
Govindarajan R., Sreevidya N., Vijaykumar M., Thakur M., Dixit V. K., Mehrotra S., et al. (2005). In Vitro antioxidant Activity of Ethanolic Extract of Chlorophytum Borivilianum. Nat. Product. Sci. 11 (3), 165–169. 10.1016/j.jep.2005.02.035 DOI
Griess B., Tom E., Domann F., Teoh-Fitzgerald M. (2017). Extracellular Superoxide Dismutase and its Role in Cancer. Free Radic. Biol. Med. 112, 464–479. 10.1016/j.freeradbiomed.2017.08.013 PubMed DOI PMC
Grover M. (2021). Chlorophytum Borivilianum (Safed Musli): Nature’s Wonder Gift. J. Ayurveda Integrated Med. Sci. 6 (4), 93–102. Retrieved from: https://www.jaims.in/jaims/article/view/1400 .
Habig W. H., Pabst M. J., Jakoby W. B. (1974). Glutathione S-Transferases. The First Enzymatic Step in Mercapturic Acid Formation. J. Biol. Chem. 249, 7130–7139. 10.1016/s0021-9258(19)42083-8 PubMed DOI
Haimovitz-Friedman A., Mizrachi A., Jaimes E. A. (2020). Manipulating Oxidative Stress Following Ionizing Radiation. J. Cel Signal 1 (1), 8–13. 10.33696/signaling.1.003 PubMed DOI PMC
Halliwell B., Gutteridge J. M. C. (2015). “Free Radicals in Biology and Medicine,” in Free Radicals in Biology and Medicine. 4th ed. (New York: Oxford University Press; ), 187–267. 10.1093/acprof:oso/9780198717478.001.0001 DOI
Hassan W., Noreen H., Rehman S., Gul S., Kamal M. A., Kamdem J. P., et al. (2017). Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants. Curr. Top. Med. Chem. 17, 1336–1370. 10.2174/1568026617666170102125648 PubMed DOI
Hissin P. J., Hilf R. (1976). A Fluorometric Method for Determination of Oxidized and Reduced Glutathione in Tissues. Anal. Biochem. 74, 214–226. 10.1016/0003-2697(76)90326-2 PubMed DOI
Hooper A., (2002). Kamasutra: Classic Love Making Techniques Reinterpreted for Today’s Lovers. Hongkong: Publishing.
Ighodaro O. M., Akinloye O. A. (2018). First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alexandria J. Med. 54, 287–293. 10.1016/j.ajme.2017.09.001 DOI
Jia L. (2005). Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: Approaches Experimental Evidences and Theory. Curr. Nanosci 1 (3), 237–243. 10.2174/157341305774642939 PubMed DOI PMC
Kaur R., Kaur S. (2020). Protective Efficacy of Chlorophytum Borivilianum Root Extract against Murine Visceral Leishmaniasis by Immunomodulating the Host Responses. J. Ayurveda Integr. Med. 11 (1), 53–61. 10.1016/j.jaim.2017.10.009 PubMed DOI PMC
Kesari K. K., Agarwal A., Henkel R. (2018). Radiations and Male Fertility. Reprod. Biol. Endocrinol. 16 (1), 118. 10.1186/s12958-018-0431-1 PubMed DOI PMC
Kesari K. K., Dhasmana A., Shandilya S., Prabhakar N., Shaukat A., Dou J., et al. (2020). Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants (Basel) 9 (6), 552. 10.3390/antiox9060552 PubMed DOI PMC
Kesari K. K., Siddiqui M. H., Meena R., Verma H. N., Kumar S. (2013). Cell Phone Radiation Exposure on Brain and Associated Biological Systems. Indian J. Exp. Biol. 51 (3), 187–200. PubMed
Kim R. K., Kim M. J., Seong K. M., Kaushik N., Suh Y., Yoo K. C., et al. (2015). Beneficial Effects of Low Dose Radiation in Response to the Oncogenic KRAS Induced Cellular Transformation. Sci. Rep. 5, 15809. 10.1038/srep15809 PubMed DOI PMC
Kirtikar K. R., Basu B. D. (1956). Indian Medicinal Plants. 2nd edition. Allahabad, India: Lalit Mohan Basu, 235–246.
Lalani N., Cummings B., Halperin R., Rakovitch E., Brundage M., Vigneault E., et al. (2017). The Practice of Radiation Oncology in Canada. Int. J. Radiat. Oncol. Biol. Phys. 97 (5), 876–880. 10.1016/j.ijrobp.2016.11.055 PubMed DOI
Lanzafame F. M., La Vignera S., Vicari E., Calogero A. E. (2009). Oxidative Stress and Medical Antioxidant Treatment in Male Infertility. Reprod. Biomed. Online 19, 638–659. 10.1016/j.rbmo.2009.09.014 PubMed DOI
Liao A. C., Craver B. M., Tseng B. P., Tran K. K., Parihar V. K., Acharya M. M., et al. (2013). Mitochondrial-targeted Human Catalase Affords Neuroprotection from Proton Irradiation. Radiat. Res. 180, 1–6. 10.1667/RR3339.1 PubMed DOI
Maiorino M., Ursini F. (2002). Oxidative Stress, Spermatogenesis and Fertility. Biol. Chem. 383 (3-4), 591–597. 10.1515/BC.2002.061 PubMed DOI
Marklund S., Marklund G. (1974). Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 47, 469–474. 10.1111/j.1432-1033.1974.tb03714.x PubMed DOI
Meistrich M. L., van Beek M. E. A. B. (1990). Radiation Sensitivity of the Human Testis. Adv. Radiat. Biol. 14, 227–268. 10.1016/B978-0-12-035414-6.50012-2 DOI
Mettler F. A., Jr., Wiest P. W., Locken J. A., Kelsey C. A. (2000). CT Scanning: Patterns of Use and Dose. J. Radiol. Prot. 20, 353–359. 10.1088/0952-4746/20/4/301 PubMed DOI
Miao W., Xufeng R., Park M. R., Gu H., Hu L., Kang J. W., et al. (2013). Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-Detoxifying Enzymes in Transplant Mice. Mol. Ther. 21, 423–432. 10.1038/mt.2012.232 PubMed DOI PMC
Milic V. D., Stankov K., Injac R., Djordjevic A., Srdjenovic B., Govedarica B., et al. (2009). Activity of Antioxidative Enzymes in Erythrocytes after a Single Dose Administration of Doxorubicin in Rats Pretreated with Fullerenol C(60)(OH)(24). Toxicol. Mech. Methods 19, 24–28. 10.1080/01612840802203098 PubMed DOI
Miraj S. S. A., Parveen N., Chaudhari S. A. (2020). In the Back Drop of Overuse of Synthetic Drugs, Can Botanicals Be One of the Answers: A Pilot Study on the Medicinal Use of Chlorophytum and Curcuma by Tribals of Central India. Ctm 6 (1), 75–83. 10.2174/2215083805666190612143120 DOI
Mizrachi A., Cotrim A. P., Katabi N., Mitchell J. B., Verheij M., Haimovitz-Friedman A. (2016). Radiation-induced Microvascular Injury as a Mechanism of Salivary Gland Hypofunction and Potential Target for Radioprotectors. Radiat. Res. 186 (2), 189–195. 10.1667/RR14431.1 PubMed DOI PMC
Moeller B. J., Cao Y., Li C. Y., Dewhirst M. W. (2004). Radiation Activates HIF-1 to Regulate Vascular Radiosensitivity in Tumors: Role of Reoxygenation, Free Radicals, and Stress Granules. Cancer Cell 5 (5), 429–441. 10.1016/s1535-6108(04)00115-1 PubMed DOI
Muthukumar K., Rajakumar S., Sarkar M. N., Nachiappan V. (2011). Glutathione Peroxidase3 of Saccharomyces cerevisiae Protects Phospholipids during Cadmium-Induced Oxidative Stress. Antonie Van Leeuwenhoek 99 (4), 761–771. 10.1007/s10482-011-9550-9 PubMed DOI
Namoju R., Chilaka N. K., Beda D. P., Avanapu S. R. (2021). Pre-pubertal Cyclophosphamide Exposure-Induced Mutilation in Spermatogenesis, Steroidogenesis and Testicular Architecture in SD Rat: Protection from an Alternative Herbal Viagra. Revista Internacional de Andrología 19 (3), 177–186. 10.1016/j.androl.2020.01.009 PubMed DOI
Ohkawa H., Ohishi N., Yagi K. (1979). Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 95, 351–358. 10.1016/0003-2697(79)90738-3 PubMed DOI
Okada K., Fujisawa M. (2019). Recovery of Spermatogenesis Following Cancer Treatment with Cytotoxic Chemotherapy and Radiotherapy. World J. Mens Health 37 (2), 166–174. 10.5534/wjmh.180043 PubMed DOI PMC
Okunieff P., Swarts S., Keng P., Sun W., Wang W., Kim J., et al. (2008). Antioxidants Reduce Consequences of Radiation Exposure. Adv. Exp. Med. Biol. 614, 165–178. 10.1007/978-0-387-74911-2_20 PubMed DOI PMC
Paris F., Fuks Z., Kang A., Capodieci P., Juan G., Ehleiter D., et al. (2001). Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice. Science 293 (5528), 293–297. 10.1126/science.1060191 PubMed DOI
Parveen F., Singh P., Singh M. P. (2020). Antifungal Activity of Some Ethnomedicinally Important Tuberous Plants of Family Liliaceae. Natl. Acad. Sci. Lett. 43, 93–97. 10.1007/s40009-019-00799-w DOI
Petkau A., Chelack W. S. (1984). Radioprotection by Superoxide Dismutase of Macrophage Progenitor Cells from Mouse Bone Marrow. Biochem. Biophys. Res. Commun. 119 (3), 1089–1095. 10.1016/0006-291x(84)90886-6 PubMed DOI
Puri H. S. (2003). Rasayana: Ayurvedic Herbs for Longevity and Rejuvenation: Volume 2 of Traditional Herbal Medicines for Modern Times. Boca Raton, FL: CRC Press.
Santapau H., Fernandes R. (1955). A new species of Chlorophytum from Salsette Island. J. Bombay. Nat. Hist. Soc. 52, 896– 900.
Scialò F., Fernández-Ayala D. J., Sanz A. (2017). Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front. Physiol. 8, 428. 10.3389/fphys.2017.00428 PubMed DOI PMC
Sharma G., Kumar M. (2012). Antioxidant and Modulatory Role of Chlorophytum Borivilianum against Arsenic Induced Testicular Impairment. J. Environ. Sci. (China) 24 (12), 2159–2165. 10.1016/s1001-0742(11)61019-x PubMed DOI
Sharma S. K., Chunekar K. C., Paudal K. (2001). Plants of Sharangdhar Samhita. New Delhi: RAV publications Director Rashtriya Ayurveda Vidyapeeth, 221–222.
Shen H., Yu H., Liang P. H., Cheng H., XuFeng R., Yuan Y., et al. (2012). An Acute Negative Bystander Effect of γ-irradiated Recipients on Transplanted Hematopoietic Stem Cells. Blood 119, 3629–3637. 10.1182/blood-2011-08-373621 PubMed DOI PMC
Singh D., Pokhnyal B., Joshi Y. M., Kadam V. (2011). Phytoharmacological Aspects of Chlorophytum Borivilianum; A Review. Int. J. Res. Pharm. Chem. 2, 853–898.
Singh S., Jat R., Singh N., Sisodia R. (2018). Anti-radiation Efficacy of Silver Nano-Particles Prepared from Chlorophytum Borivillianum Root Extract. Int. J. Curr. Adv. Res. 7, 9861–9866. 10.24327/ijcar.2018.9866.1646 DOI
Singh S., Vyas R., Chaturvedi A., Sisodia R. (2018). Rapid Phytosynthesis of Silver Nanoparticles Using Chlorophytum Borivilianum Root Extract and its Antimicrobial Activity. J. Pharmacognosy Phytochemistry 7 (5), 1738–1744.
Thakur M., Bhargava S., Dixit V. K. (2007). Immunomodulatory Activity of Chlorophytum Borivilianum Sant. F. Evid. Based Complement. Alternat Med. 4 (4), 419–423. 10.1093/ecam/nel094 PubMed DOI PMC
Tovar-y-Romo L. B., Penagos-Puig A., Ramírez-Jarquín J. O. (2016). Endogenous Recovery after Brain Damage: Molecular Mechanisms that Balance Neuronal Life/death Fate. J. Neurochem. 136 (1), 13–27. 10.1111/jnc.13362 PubMed DOI
Tripathi N., Saini N., Nair P., Tiwari S. (2012). Lack of Genetic Diversity of a Critically Endangered Important Medicinal Plant Chlorophytum Borivilianum in Central India Revealed by AFLP Markers. Physiol. Mol. Biol. Plants 18 (2), 161–167. 10.1007/s12298-012-0108-8 PubMed DOI PMC
Tripathi R. K., Dethe P. D., Bhojne S. K., Raut A. A., Rege N. N. (2019). A Prospective, Randomized, Placebo-Controlled, Double-Blind Comparative Pilot Study to Evaluate the Efficacy of Chlorophytum Borivilianum on Physical Performance. Indian J. Pharmacol. 51 (3), 150–156. 10.4103/ijp.IJP_115_18 PubMed DOI PMC
Triveni A. (1977). Rasendra Sara Sangrah: Vajikaran Adhikar. Rajkot, India: Nutan Press, 617–643.
Verma R., Misra V., Bisen P. S. (2020). Nutritional and Medicinal Values of Chlorophytum Borivilianum: Minireview of Current Status and Future Possibilities. Cnf 16 (9), 1338–1345. 10.2174/1573401316666200225122210 DOI
Vyas R., Sharma G., Sain D., Sisodia R. (2020). Effects of Chlorophytum Borivilianum Sant. F against Gamma Radiation-Induced Testicular Injuries in Swiss Albino Mice. AYU 41, 45–51. 10.4103/ayu.AYU_82_20 PubMed DOI PMC
Weydert C. J., Cullen J. J. (2010). Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue. Nat. Protoc. 5 (1), 51–66. 10.1038/nprot.2009.197 PubMed DOI PMC
Wood J. L. (1970). In: Metabolic Conjugation and Metabolic Hydrolysis. Editor Fishman W. H. (New York: Academic Press; ), II, 61–299. 9781483269467. eBook ISBN:.
Xiao X., Luo H., Vanek K. N., LaRue A. C., Schulte B. A., Wang G. Y. (2015). Catalase Inhibits Ionizing Radiation-Induced Apoptosis in Hematopoietic Stem and Progenitor Cells. Stem Cell Dev 24 (11), 1342–1351. 10.1089/scd.2014.0402 PubMed DOI PMC
Yu Y., Tang D., Kang R. (2015). Oxidative Stress-Mediated HMGB1 Biology. Front. Physiol. 6, 93. 10.3389/fphys.2015.00093 PubMed DOI PMC