Radical scavenging activity of Chlorophytum borivilianum L. root extract and its protective role in cauda epididymal sperm integrity in Mus musculus after gamma irradiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37025174
PubMed Central
PMC10070789
DOI
10.3389/fcell.2023.1064574
PII: 1064574
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophytum borivilianum, male fertility, oxidative stress, sperm characteristics, sperm maturation,
- Publikační typ
- časopisecké články MeSH
Background: Chlorophytum borivilianum L. is a recognized herbal medicine for the management of impotency in South Asian countries. In Ayurveda, it is used for the management of multiple health conditions, including diabetes, infection, and cardiovascular diseases. Parts of the plant have been used as excellent antioxidants and scavengers of free radicals. Since oxidative stress plays an important role in spermatogenesis and fertility in male populations, this study evaluated the role of ethanolic extract of C. borivilianum roots in epididymal sperm maturation against adversities posed by ionizing gamma irradiation. Materials and methods: Antioxidant potential of C. borivilianum root extract (CRE) was evaluated through DPPH (2,2-diphenylpicrylhydrazyl) and NO (nitric oxide) scavenging assays. Four groups of healthy Swiss albino mice were constituted, which were labeled as follows: Group I: sham control, Group II: 7-day pre-treatment with 50 mg/kg CRE, Group III: 6 Gy irradiation without pre-treatment, and Group IV: 7-day pre-treatment with 50 mg/kg CRE and 6 Gy irradiation on day 7. Swiss albino mice were observed for 30 days and later sacrificed to evaluate sperm quality parameters. Results: CRE showed a remarkable antioxidant potential with IC50 values of 46.37 μg/ml and 98.39 μg/ml for DPPH and NO, respectively. A significant decline (p < 0.001) in cauda epididymal sperm count, motility, and viability was observed in Group III animals. Group IV also showed a substantial decline (p < 0.01) in all three parameters compared to Group I; nonetheless, these were significantly higher than Group III. Morphological alterations indicated a coiled and bent tail, with the presence of cytoplasmic droplets in Group III, which declined substantially in Group IV. The ultrastructure of sperm indicated higher curvature of hook in Group III than Group IV, indicating specific interferences in the sperm maturation process. Conclusion: It was concluded that pre-treatment with 50 mg/kg body weight of CRE could protect sperm during epididymal maturation against oxidative stress.
Department of Applied Physics School of Science Aalto University Espoo Finland
Department of Life Science and Bioinformatics Assam University Silchar India
Department of Zoology University of Rajasthan Jaipur India
Faculty of Biotechnology and Food Sciences Slovak University of Agriculture in Nitra Nitra Slovakia
Zobrazit více v PubMed
Agarwal A., Virk G., Ong C., du Plessis S. S. (2014). Effect of oxidative stress on male reproduction. World J. Mens. Health 32 (1), 1–17. 10.5534/wjmh.2014.32.1.1 PubMed DOI PMC
Agnivesha C., Dridhabala (2006). New Delhi: Rashtriya samskrita samsthan; chikitsa sthana, 1st Chapter, 1st pada, 9-10th Verse with Ayurveda Dipika commentary of Chakrapani Dutta, Pt. Yadavji Trikamji Acharya; editor; p. 377.
Aitken R. J. S. T., Jobling M. S., Baker M. A., De Iuliis G. N. (2014). Oxidative stress and male reproductive health. Asian J. Androl. 16 (1), 31–38. 10.4103/1008-682X.122203 PubMed DOI PMC
Aladakatti R. H., Ahamed R. N. (1999). Effect of Azadirachta indica leaves on rat spermatozoa. Indian J. Exp. Biol. 37, 1251–1254. PubMed
Alahmar A. T. (2019). Role of oxidative stress in male infertility: An updated review. J. Hum. Reprod. Sci. 12(1):4–18. 10.4103/jhrs.JHRS_150_18 PubMed DOI PMC
Ayala A., Muñoz M. F., Argüelles S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 360438, 10.1155/2014/360438 PubMed DOI PMC
Brash A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 274, 23679–23682. 10.1074/jbc.274.34.23679 PubMed DOI
Das S., Singhal S., Kumar N., Rao C. M., Sumalatha S., Dave J., et al. (2016). Standardised extract of safed musli (Chlorophytum borivilianum) increases aphrodisiac potential besides being safe in male Wistar rats. Andrologia 48 (10), 1236–1243. 10.1111/and.12567 PubMed DOI
Datta K., Suman S., Kallakury B. V., Fornace A. J., Jr. (2012). Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 7 (8), e42224. 10.1371/journal.pone.0042224 PubMed DOI PMC
de la Haba C., Palacio J. R., Martínez P., Morros A. (2013). Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochim. Biophys. Acta 1828 (2), 357–364. 10.1016/j.bbamem.2012.08.013 PubMed DOI
Devi P., Singh M., Somagond Y. M., Aggarwal A. (2021). Alleviation of heat stress by Chlorophytum borivilianum: Impact on stress markers, antioxidant, and immune status in crossbred cows. Trop. Animal Health Prod. 53 (3), 351. 10.1007/s11250-021-02796-y PubMed DOI
Dutta S., Majzoub A., Agarwal A. (2019). Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 17 (2), 87–97. 10.1080/2090598X.2019.1599624 PubMed DOI PMC
Flesch F. M., Brouwers J. F., Nievelstein P. F., Verkleij A. J., van Golde L. M., Colenbrander B., et al. (2001). Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J. Cell Sci. 114:3543–3555. 10.1242/jcs.114.19.3543 PubMed DOI
Garrat D. C. (1964). The quantitative analysis of drugs. Chapman & Hall, 456–458. Japan, 3.
Giri S. S., Sen S. S., Chi C., Kim H. J., Yun S., Park S. C., et al. (2015). Chlorophytum borivilianum polysaccharide fraction provokes the immune function and disease resistance of Labeo rohita against Aeromonas hydrophila. J. Immunol. Res. 2015, 256510. 10.1155/2015/256510 PubMed DOI PMC
Giribabu N., Kumar K. E., Rekha S. S., Muniandy S., Salleh N. (2014). Chlorophytum borivilianum (Safed Musli) root extract prevents impairment in characteristics and elevation of oxidative stress in sperm of streptozotocin-induced adult male diabetic Wistar rats. BMC Complement. Altern. Med. 14, 291. 10.1186/1472-6882-14-291 PubMed DOI PMC
Gorpinchenko I., Nikitin O., Banyra O., Shulyak A. (2014). The influence of direct mobile phone radiation on sperm quality. Cent. Eur. J. Urol. 67, 65–71. 10.5173/ceju.2014.01.art14 PubMed DOI PMC
Govindarajan R., Sreevidya N., Vijayakumar M., Thakur M., Dixit V. K., Mehrotra S., et al. (2005). In vitro antioxidant activity of ethanolic extract of Chlorophytum borivilianum . Nat. Prod. Sci. 11 (3), 165–169.
Hamilton L,E., Suzuki J., Aguila L., Meinsohn M. C., Smith O. E., Protopapas N., et al. (2019). Sperm-borne glutathione-S-transferase omega 2 accelerates the nuclear decondensation of spermatozoa during fertilization in mice. Biol. Reprod. 101 (2), 368–376. 10.1093/biolre/ioz082 PubMed DOI
Jovanovic S. V., Steenken S., Hara Y., MichaelSimic G. (1996). Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J. Chem. Soc. Perkin Trans. 2, 2497–2504. 10.1039/p29960002497 DOI
Kenjele R., Shah R., Sethaye S. (2008). Effect of Chlorophytum borivilianum on sexual behaviour and sperm count in male rats. Phytother. Res. 22, 796–801. 10.1002/ptr.2369 PubMed DOI
Kesari K. K., Behari J. (2012). Evidence for mobile phone radiation exposure effects on reproductive pattern of male rats: Role of ROS. Electromagn. Biol. Med. 31, 213–222. 10.3109/15368378.2012.700292 PubMed DOI
Khan M. I., Karima G., Khan M. Z., Shin J. H., Kim J. D. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. Int. J. Mol. Sci. 2022;23(18):10665. PMID: 36142578; PMCID: PMC9504392. 10.3390/ijms231810665 PubMed DOI PMC
Kumar S., Nirala J. P., Behari J., Paulraj R. (2014). Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J. Exp. Biol. 52, 890–897. PubMed
Kurkowska W., Bogacz A., Janiszewska M., Gabryś E., Tiszler M., Bellanti F., et al. (2020). Oxidative stress is associated with reduced sperm motility in normal semen. Am. J. Mens. Health 14 (5), 1557988320939731. 10.1177/1557988320939731 PubMed DOI PMC
Lohiya N. K., Alam I., Hussain M., Khan S. R., Ansari A. S. (2014). Risug: An intravasal injectable male contraceptive. Indian J. Med. Res. 140 (1), S63–S72. PubMed PMC
Lohiya N. K., Manivannan B., Mishra P. K. (1998). Ultrastructural changes in the spermatozoa of langur monkeys Presbytis entellus entellus after vas occlusion with styrene maleic anhydride. Contraception 57, 125–132. 10.1016/s0010-7824(98)00011-0 PubMed DOI
Macáková K., Afonso R., Saso L., Mladěnka P. (2019). The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med. 134, 429–444. Epub 2019 Jan 29. PMID: 30703480. 10.1016/j.freeradbiomed.2019.01.026 PubMed DOI
Maccarrone M., Melino G., Finazzi-Agrò A., FinAzzi-Agro A. (2001). Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 8, 776–784. 10.1038/sj.cdd.4400908 PubMed DOI
Manandhar G., Miranda-Vizuete A., Pedrajas J. R., Krause W. J., Zimmerman S., Sutovsky M., et al. (2009). Peroxiredoxin 2 and peroxidase enzymatic activity of mammalian spermatozoa. Biol. Reprod. 80 (6), 1168–1177. 10.1095/biolreprod.108.071738 PubMed DOI
Miraj S. S. A., Parveen N., Chaudhari S. A. (2020). In the back drop of overuse of synthetic drugs, can botanicals Be one of the answers: A pilot study on the medicinal use of Chlorophytum and curcuma by tribals of central India. Ctm 6 (1), 75–83. 10.2174/2215083805666190612143120 DOI
Pratiwi R., Nantasenamat C., Ruankham W., Suwanjang W., Prachayasittikul V., Prachayasittikul S., et al. Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family. Front. Nutr. 2021;8:648995. 10.3389/fnut.2021.648995 PubMed DOI PMC
Protopapas N., Hamilton L. E., Warkentin R., Xu W., Sutovsky P., Oko R. (2019). The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituents. Biol. Reprod. 100 (6), 1461–1472. 10.1093/biolre/ioz052 PubMed DOI PMC
Puri H. S. (2003). Rasayana: Ayurvedic herbs for longevity and rejuvenation: Volume 2 of traditional herbal medicines for modern times. Boca Raton, FL: CRC Press.
Rengan A. K., Agarwal A., van der Linde M., du Plessis S. S. (2012). An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod. Biol. Endocrinol. 10, 92. 10.1186/1477-7827-10-92 PubMed DOI PMC
Sabeti P., Pourmasumi S., Rahiminia T., Akyash F., Talebi A. R. (2016). Etiologies of sperm oxidative stress. Int. J. Reprod. Biomed. 14 (4), 231–240. 10.29252/ijrm.14.4.231 PubMed DOI PMC
Shimada K., Fujikawa K., Yahara K., Nakamura T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40, 945–948. 10.1021/jf00018a005 DOI
Singh A., Singh H. (1983). Time-scale and nature of radiation-biological damage: Approaches to radiation protection and post-irradiation therapy. Prog. Biophys. Mol. Biol. 39, 69–107. 10.1016/0079-6107(83)90014-7 PubMed DOI
Singh D., Pokhnyal B., Joshi Y. M., Kadam V. (2011). Phytoharmacological aspects of Chlorophytum borivilianum; A review. Int. J. Res. Pharm. Chem. 2, 853–898.
Singh S., Jat R., Singh N., Sisodia R. (2018). Anti-radiation efficacy of silver nano-particles prepared from Chlorophytum borivillianum root extract. Int. J. Curr. Adv. Res. 7, 9861–9866.
Varea-Sánchez M., Tourmente M., Bastir M., Roldan E. R. S. (2016). Unraveling the sperm bauplan: Relationships between sperm head morphology and sperm function in rodents. Biol. Reprod. 95, 25–29. 10.1095/biolreprod.115.138008 PubMed DOI
Verma R., Misra V., Bisen P. S. (2020). Nutritional and medicinal values of Chlorophytum borivilianum: Minireview of current status and future possibilities. Cnf 16 (9), 1338–1345. 10.2174/1573401316666200225122210 DOI
Visavadiya N. P., Soni B., Dalwadi N., Madamwar D. (2010). Chlorophytum borivilianum as potential terminator of free radicals in various in vitro oxidation systems. Drug Chem. Toxicol. 33 (2), 173–182. 10.3109/01480540903311068 PubMed DOI
Vyas R., Kesari K. K., Slama P., Roychoudhury S., Sisodia R. (2022). Differential activity of antioxidants in testicular tissues following administration of Chlorophytum borivilianum in gamma-irradiated Swiss albino mice. Front. Pharmacol. 12, 774444. 10.3389/fphar.2021.774444 PubMed DOI PMC
Vyas R., Sharma G., Sain D., Sisodia R. (2020). Effects of Chlorophytum borivilianum Sant. F against gamma radiation-induced testicular injuries in Swiss albino mice. Ayu 41 (1), 45–51. 10.4103/ayu.AYU_82_20 PubMed DOI PMC
World Health Organization (2010). . WHO laboratory manual for the examination and processing of human semen. 5th ed. World Health Organization. Available at: https://apps.who.int/iris/handle/10665/44261 .
Wu P. Y., Scarlata E., O'Flaherty C. (2020). Long-term adverse effects of oxidative stress on rat epididymis and spermatozoa. Antioxidants (Basel). 9 (2), 170. 10.3390/antiox9020170 PubMed DOI PMC