Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
67985823
Research Project RVO
LX22NPO5104
European Union Next Generation EU
PubMed
39801395
PubMed Central
PMC11726269
DOI
10.1111/apha.14278
Knihovny.cz E-zdroje
- Klíčová slova
- acylcarnitine, chronodisruption, clock, female, glucose homeostasis, liver, metabolome, pancreas, rat, sleep, suprachiasmatic nucleus,
- MeSH
- cirkadiánní hodiny fyziologie MeSH
- cirkadiánní rytmus * fyziologie MeSH
- fotoperioda MeSH
- játra * metabolismus MeSH
- karnitin * analogy a deriváty metabolismus MeSH
- krysa rodu Rattus MeSH
- metabolom * MeSH
- nucleus suprachiasmaticus metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acylcarnitine MeSH Prohlížeč
- karnitin * MeSH
AIM: Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle. METHODS: We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling). RESULTS: CD attenuated the rhythmic output of the central clock in the suprachiasmatic nucleus via Prok2 signaling, thereby disrupting locomotor activity, the estrous cycle, sleep patterns, and mutual phase relationship between the central and peripheral clocks. In the periphery, CD abolished Per1,2 expression rhythms in peripheral tissues (liver, pancreas, colon) and worsened glucose homeostasis. In the liver, it impaired the expression of NAD+, lipid, and cholesterol metabolism genes and abolished most of the high-amplitude rhythms of lipids and polar metabolites. Interestingly, CD abolished the circadian rhythm of Cpt1a expression and increased the levels of long-chain acylcarnitines (ACar 18:2, ACar 16:0), indicating enhanced fatty acid oxidation in mitochondria. CONCLUSION: Our data show the widespread effects of CD on metabolism and point to ACars as biomarkers for CD due to misaligned sleep and feeding patterns.
Zobrazit více v PubMed
Roenneberg T, Wirz‐Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythm. 2003;18(1):80‐90. PubMed
Sladek M, Kudrnacova Roschova M, Adamkova V, Hamplova D, Sumova A. Chronotype assessment via a large scale socio‐demographic survey favours yearlong standard time over daylight saving time in central Europe. Sci Rep. 2020;10(1):1419. PubMed PMC
Antypa N, Vogelzangs N, Meesters Y, Schoevers R, Penninx BW. Chronotype associations with depression and anxiety disorders in a large cohort study. Depress Anxiety. 2016;33(1):75‐83. PubMed
Baldanzi G, Hammar U, Fall T, et al. Evening chronotype is associated with elevated biomarkers of cardiometabolic risk in the EpiHealth cohort: a cross‐sectional study. Sleep. 2022;45(2). PubMed PMC
Sladek M, Klusacek J, Hamplova D, Sumova A. Population‐representative study reveals cardiovascular and metabolic disease biomarkers associated with misaligned sleep schedules. Sleep. 2023;46(6):zsad037. PubMed PMC
Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA. 1972;69(6):1583‐1586. PubMed PMC
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975‐978. PubMed
Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near‐24‐hour period of the human circadian pacemaker. Science. 1999;284(5423):2177‐2181. PubMed
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453‐469. PubMed
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164‐179. PubMed PMC
Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014;24(2):90‐99. PubMed PMC
Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90(3):1063‐1102. PubMed
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67‐84. PubMed
Stephan FK. The "other" circadian system: food as a Zeitgeber. J Biol Rhythm. 2002;17(4):284‐292. PubMed
Sladek M, Rybova M, Jindrakova Z, et al. Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology. 2007;133(4):1240‐1249. PubMed
Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008‐1015. PubMed PMC
Lewis P, Oster H, Korf HW, Foster RG, Erren TC. Food as a circadian time cue ‐ evidence from human studies. Nat Rev Endocrinol. 2020;16(4):213‐223. PubMed
Gagliano O, Luni C, Li Y, et al. Synchronization between peripheral circadian clock and feeding‐fasting cycles in microfluidic device sustains oscillatory pattern of transcriptome. Nat Commun. 2021;12(1):6185. PubMed PMC
Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin. 2009;4(2):165‐177. PubMed PMC
Cheng MY, Bullock CM, Chuanyu L, et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 2002;417(6887):405‐410. PubMed
Mieda M, Okamoto H, Sakurai T. Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol. 2016;26(18):2535‐2542. PubMed
Jones JR, Chaturvedi S, Granados‐Fuentes D, Herzog ED. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat Commun. 2021;12(1):5763. PubMed PMC
Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998;20(6):1103‐1110. PubMed
Ikegami K, Nakajima M, Minami Y, Nagano M, Masubuchi S, Shigeyoshi Y. cAMP response element induces Per1 in vivo. Biochem Biophys Res Commun. 2020;531(4):515‐521. PubMed
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System‐driven and oscillator‐dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007;5(2):e34. PubMed PMC
Eckel‐Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone‐Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA. 2012;109(14):5541‐5546. PubMed PMC
Ruben MD, Wu G, Smith DF, et al. A database of tissue‐specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018;10(458). PubMed PMC
Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006;16(11):1107‐1115. PubMed
Qian L, Gu Y, Zhai Q, et al. Multitissue circadian proteome atlas of WT and Per1(−/−)/Per2(−/−) mice. Mol Cell Proteomics. 2023;22(12):100675. PubMed PMC
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci USA. 2012;109(7):2625‐2629. PubMed PMC
Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014;64(3):207‐218. PubMed PMC
Gale JE, Cox HI, Qian J, Block GD, Colwell CS, Matveyenko AV. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta‐cell loss and dysfunction. J Biol Rhythm. 2011;26(5):423‐433. PubMed PMC
Salgado‐Delgado RC, Saderi N, Basualdo Mdel C, Guerrero‐Vargas NN, Escobar C, Buijs RM. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One. 2013;8(4):e60052. PubMed PMC
Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004‐1008. PubMed PMC
Polidarova L, Sladek M, Novakova M, Parkanova D, Sumova A. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats ‐ a potential role for Bmal2 in the liver. PLoS One. 2013;8(9):e75690. PubMed PMC
Brown MR, Sen SK, Mazzone A, et al. Time‐restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of beta cell function. Sci Adv. 2021;7(51):eabg6856. PubMed PMC
Castanon‐Cervantes O, Wu M, Ehlen JC, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796‐5805. PubMed PMC
Drapsin M, Dockal T, Houdek P, Sladek M, Semenovykh K, Sumova A. Circadian clock in choroid plexus is resistant to immune challenge but dampens in response to chronodisruption. Brain Behav Immun. 2024;117:255‐269. PubMed
Polidarova L, Sladek M, Sotak M, Pacha J, Sumova A. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int. 2011;28(3):204‐215. PubMed
Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 2005;8(3):267‐269. PubMed
Polidarova L, Sladek M, Novosadova Z, Sumova A. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Chronobiol Int. 2017;34(1):105‐117. PubMed
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury‐Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950‐2961. PubMed PMC
Mendoza J, Pevet P, Challet E. Circadian and photic regulation of clock and clock‐controlled proteins in the suprachiasmatic nuclei of calorie‐restricted mice. Eur J Neurosci. 2007;25(12):3691‐3701. PubMed
Novakova M, Polidarova L, Sladek M, Sumova A. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Neuroscience. 2011;197:65‐71. PubMed
Honzlova P, Novosadova Z, Houdek P, Sladek M, Sumova A. Misaligned feeding schedule elicits divergent circadian reorganizations in endo‐ and exocrine pancreas clocks. Cell Mol Life Sci. 2022;79(6):318. PubMed PMC
Qian J, Morris CJ, Caputo R, Wang W, Garaulet M, Scheer F. Sex differences in the circadian misalignment effects on energy regulation. Proc Natl Acad Sci USA. 2019;116(47):23806‐23812. PubMed PMC
Kasahara T, Abe K, Mekada K, Yoshiki A, Kato T. Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Natl Acad Sci USA. 2010;107(14):6412‐6417. PubMed PMC
Yambe Y, Arima H, Kakiya S, Murase T, Oiso Y. Diurnal changes in arginine vasopressin gene transcription in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res. 2002;104(2):132‐136. PubMed
Kalsbeek A, Buijs RM, van Heerikhuize JJ, Arts M, van der Woude TP. Vasopressin‐containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res. 1992;580(1–2):62‐67. PubMed
Xiao L, Zhang C, Li X, et al. Signaling role of prokineticin 2 on the estrous cycle of female mice. PLoS One. 2014;9(3):e90860. PubMed PMC
Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005;28(3):152‐157. PubMed
Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food‐entrainable circadian rhythms. Nat Neurosci. 2006;9(3):398‐407. PubMed
Verwey M, Khoja Z, Stewart J, Amir S. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food‐deprived and free‐fed rats. Neuroscience. 2007;147(2):277‐285. PubMed
Verwey M, Khoja Z, Stewart J, Amir S. Region‐specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats. Neurosci Lett. 2008;440(1):54‐58. PubMed
Li JD, Hu WP, Boehmer L, et al. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci. 2006;26(45):11615‐11623. PubMed PMC
Zhang Y, Fang B, Emmett MJ, et al. Discrete functions of nuclear receptor rev‐erbalpha couple metabolism to the clock. Science. 2015;348(6242):1488‐1492. PubMed PMC
Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the CLOCK components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627‐631. PubMed PMC
Saini C, Liani A, Curie T, et al. Real‐time recording of circadian liver gene expression in freely moving mice reveals the phase‐setting behavior of hepatocyte clocks. Genes Dev. 2013;27(13):1526‐1536. PubMed PMC
Sinturel F, Gos P, Petrenko V, et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 2021;35(5–6):329‐334. PubMed PMC
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA. 2008;105(39):15172‐15177. PubMed PMC
Grimaldi B, Bellet MM, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010;12(5):509‐520. PubMed PMC
Eckel‐Mahan K, Sassone‐Corsi P. Metabolism and the circadian clock converge. Physiol Rev. 2013;93(1):107‐135. PubMed PMC
Chen L, Yang G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res. 2014;2014(653017):1‐6. PubMed PMC
Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177‐197. PubMed PMC
Greco CM, Koronowski KB, Smith JG, et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci Adv. 2021;7(39):eabi7828. PubMed PMC
Aviram R, Manella G, Kopelman N, et al. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 2016;62(4):636‐648. PubMed
Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA. 2014;111(29):10761‐10766. PubMed PMC
Weljie AM, Meerlo P, Goel N, et al. Oxalic acid and diacylglycerol 36:3 are cross‐species markers of sleep debt. Proc Natl Acad Sci USA. 2015;112(8):2569‐2574. PubMed PMC
van den Berg R, Mook‐Kanamori DO, Donga E, et al. A single night of sleep curtailment increases plasma acylcarnitines: novel insights in the relationship between sleep and insulin resistance. Arch Biochem Biophys. 2016;589:145‐151. PubMed
Sladek M, Polidarova L, Novakova M, Parkanova D, Sumova A. Early chronotype and tissue‐specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One. 2012;7(10):e46951. PubMed PMC
Polidarova L, Houdek P, Sumova A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int. 2017;34(9):1273‐1287. PubMed
Novosadova Z, Polidarova L, Sladek M, Sumova A. Alteration in glucose homeostasis and persistence of the pancreatic clock in aged mPer2(Luc) mice. Sci Rep. 2018;8(1):11668. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method. Methods. 2001;25(4):402‐408. PubMed
Hricko J, Rudl Kulhava L, Paucova M, et al. Short‐term stability of serum and liver extracts for untargeted metabolomics and Lipidomics. Antioxidants (Basel). 2023;12(5). PubMed PMC
Tsugawa H, Cajka T, Kind T, et al. MS‐DIAL: data‐independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523‐526. PubMed PMC
Teichman G, Cohen D, Ganon O, et al. RNAlysis: analyze your RNA sequencing data without writing a single line of code. BMC Biol. 2023;21(1):74. PubMed PMC
Hutchison AL, Maienschein‐Cline M, Chiang AH, et al. Improved statistical methods enable greater sensitivity in rhythm detection for genome‐wide data. PLoS Comput Biol. 2015;11(3):e1004094. PubMed PMC
Agostinelli F, Ceglia N, Shahbaba B, Sassone‐Corsi P, Baldi P. What time is it? Deep learning approaches for circadian rhythms. Bioinformatics. 2016;32(12):i8‐i17. PubMed PMC
Jensen BL, Persson PB. Good publication practice in physiology 2021. Acta Physiol (Oxf). 2022;234(1):e13741. PubMed