Maternal food-derived signals oscillate in the fetal suprachiasmatic nucleus before its circadian clock develops
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41004457
PubMed Central
PMC12469392
DOI
10.1371/journal.pbio.3003404
PII: PBIOLOGY-D-25-01194
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní hodiny * fyziologie genetika MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- cirkadiánní rytmus fyziologie MeSH
- krysa rodu Rattus MeSH
- metabolom MeSH
- nucleus suprachiasmaticus * metabolismus embryologie fyziologie MeSH
- proteiny CLOCK genetika metabolismus MeSH
- těhotenství MeSH
- transkripční faktory ARNTL genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkadiánní proteiny Period MeSH
- proteiny CLOCK MeSH
- transkripční faktory ARNTL MeSH
The ontogenesis of the circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and its sensitivity to maternal signals are not fully understood. Here, we investigated the development of the clock in the rat SCN from the fetal to the postweaning period and identified rhythmic metabolic signals from the mother to the fetal SCN. We determined daily expression profiles of clock genes (Per2, Nr1d1, Bmal1) and clock- and metabolism-related genes (Dbp, E4bp4) and performed time-resolved analysis of the metabolome and lipidome in the SCN and plasma of 19-day-old embryos (E19) and 2-, 10-, 20-, and 28-day-old pups (P02-28). Our data show that rhythms in the expression of canonical clock genes are absent at E19 and develop gradually until P10, but the Dbp rhythm was still developing between P20 and P28. Expression of the metabolism-sensitive gene E4bp4 and levels of essential amino acids and other metabolites supplied by maternal food are rhythmic in the fetal SCN, which is lost after birth at P02 and reappears later in the postnatal period. Maternal food-derived metabolites were also rhythmic in fetal plasma. The temporal coherence of the fetal SCN metabolome and lipidome declines markedly and its rhythmicity disappears immediately after birth. The results revealed previously unforeseen pathways by which the fetal SCN may receive rhythmic information from the mother before its clock develops.
Zobrazit více v PubMed
Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69(6):1583–6. doi: 10.1073/pnas.69.6.1583 PubMed DOI PMC
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8. doi: 10.1126/science.2305266 PubMed DOI
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19(8):453–69. doi: 10.1038/s41583-018-0026-z PubMed DOI
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. doi: 10.1146/annurev-physiol-021909-135821 PubMed DOI
Deota S, Pendergast JS, Kolthur-Seetharam U, Esser KA, Gachon F, Asher G, et al. The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab. 2025;7(3):454–68. doi: 10.1038/s42255-025-01237-6 PubMed DOI
Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 2012;109(14):5541–6. doi: 10.1073/pnas.1118726109 PubMed DOI PMC
Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ, Lee YY, et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018;10(458):eaat8806. doi: 10.1126/scitranslmed.aat8806 PubMed DOI PMC
Qian L, Gu Y, Zhai Q, Xue Z, Liu Y, Li S, et al. Multitissue circadian proteome atlas of WT and PubMed DOI PMC
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. doi: 10.1038/nrg.2016.150 PubMed DOI PMC
Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67–84. doi: 10.1038/s41580-019-0179-2 PubMed DOI
Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357(6354):912–6. doi: 10.1126/science.aan0677 PubMed DOI PMC
Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science. 2020;369(6509):1388–94. doi: 10.1126/science.aba8984 PubMed DOI PMC
Sumova A, Sladek M, Polidarova L, Novakova M, Houdek P. Circadian system from conception till adulthood. Prog Brain Res. 2012;199:83–103. doi: 10.1016/B978-0-444-59427-3.00005-8 PubMed DOI
Reppert SM, Schwartz WJ. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J Neurosci. 1986;6(9):2724–9. doi: 10.1523/JNEUROSCI.06-09-02724.1986 PubMed DOI PMC
Sumová A, Čečmanová V. Mystery of rhythmic signal emergence within the suprachiasmatic nuclei. Eur J Neurosci. 2020;51(1):300–9. doi: 10.1111/ejn.14141 PubMed DOI
Houdek P, Sumová A. In vivo initiation of clock gene expression rhythmicity in fetal rat suprachiasmatic nuclei. PLoS One. 2014;9(9):e107360. doi: 10.1371/journal.pone.0107360 PubMed DOI PMC
Sládek M, Sumová A, Kováciková Z, Bendová Z, Laurinová K, Illnerová H. Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 2004;101(16):6231–6. doi: 10.1073/pnas.0401149101 PubMed DOI PMC
Kováciková Z, Sládek M, Bendová Z, Illnerová H, Sumová A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. J Biol Rhythms. 2006;21(2):140–8. doi: 10.1177/0748730405285876 PubMed DOI
Greiner P, Houdek P, Sládek M, Sumová A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol. 2022;20(5):e3001637. doi: 10.1371/journal.pbio.3001637 PubMed DOI PMC
Bates K, Herzog ED. Maternal-fetal circadian communication during pregnancy. Front Endocrinol (Lausanne). 2020;11:198. doi: 10.3389/fendo.2020.00198 PubMed DOI PMC
Reppert SM, Schwartz WJ. Maternal coordination of the fetal biological clock in utero. Science. 1983;220(4600):969–71. doi: 10.1126/science.6844923 PubMed DOI
Reppert SM, Schwartz WJ. The suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose. J Neurosci. 1984;4(7):1677–82. doi: 10.1523/JNEUROSCI.04-07-01677.1984 PubMed DOI PMC
Fuchs JL, Moore RY. Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: a study using the 2-deoxy[1-14C] glucose method. Proc Natl Acad Sci U S A. 1980;77(2):1204–8. doi: 10.1073/pnas.77.2.1204 PubMed DOI PMC
Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 2018;174(6):1571-1585.e11. doi: 10.1016/j.cell.2018.08.042 PubMed DOI PMC
Tognini P, Samad M, Kinouchi K, Liu Y, Helbling J-C, Moisan M-P, et al. Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc Natl Acad Sci U S A. 2020;117(47):29904–13. doi: 10.1073/pnas.2016589117 PubMed DOI PMC
Buijink MR, van Weeghel M, Harms A, Murli DS, Meijer JH, Hankemeier T, et al. Loss of temporal coherence in the circadian metabolome across multiple tissues during ageing in mice. Eur J Neurosci. 2024;60(2):3843–57. doi: 10.1111/ejn.16428 PubMed DOI
Vondrackova M, Kopczynski D, Hoffmann N, Kuda O. LORA, Lipid Over-Representation Analysis based on structural information. Anal Chem. 2023;95(34):12600–4. doi: 10.1021/acs.analchem.3c02039 PubMed DOI PMC
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89–131. doi: 10.1016/j.pneurobio.2006.12.003 PubMed DOI PMC
Hernández-Benítez R, Vangipuram SD, Ramos-Mandujano G, Lyman WD, Pasantes-Morales H. Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci. 2013;35(1):40–9. doi: 10.1159/000346900 PubMed DOI
Pearce LA, Schanberg SM. Histamine and spermidine content in brain during development. Science. 1969;166(3910):1301–3. doi: 10.1126/science.166.3910.1301 PubMed DOI
Redman RS, Sweney LR. Changes in diet and patterns of feeding activity of developing rats. J Nutr. 1976;106(5):615–26. doi: 10.1093/jn/106.5.615 PubMed DOI
Weinert D. Ontogenetic development of the mammalian circadian system. Chronobiol Int. 2005;22(2):179–205. doi: 10.1081/cbi-200053473 PubMed DOI
Sládek M, Jindráková Z, Bendová Z, Sumová A. Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1224-9. doi: 10.1152/ajpregu.00184.2006 PubMed DOI
El-Hennamy R, Mateju K, Bendová Z, Sosniyenko S, Sumová A. Maternal control of the fetal and neonatal rat suprachiasmatic nucleus. J Biol Rhythms. 2008;23(5):435–44. doi: 10.1177/0748730408322635 PubMed DOI
Astiz M, Oster H. Feto-maternal crosstalk in the development of the circadian clock system. Front Neurosci. 2021;14:631687. doi: 10.3389/fnins.2020.631687 PubMed DOI PMC
Houdek P, Polidarová L, Nováková M, Matějů K, Kubík Š, Sumová A. Melatonin administered during the fetal stage affects circadian clock in the suprachiasmatic nucleus but not in the liver. Dev Neurobiol. 2015;75(2):131–44. doi: 10.1002/dneu.22213 PubMed DOI
Čečmanová V, Houdek P, Šuchmanová K, Sládek M, Sumová A. Development and entrainment of the fetal clock in the suprachiasmatic nuclei: the role of glucocorticoids. J Biol Rhythms. 2019;34(3):307–22. doi: 10.1177/0748730419835360 PubMed DOI
Astiz M, Heyde I, Fortmann MI, Bossung V, Roll C, Stein A, et al. The circadian phase of antenatal glucocorticoid treatment affects the risk of behavioral disorders. Nat Commun. 2020;11(1):3593. doi: 10.1038/s41467-020-17429-5 PubMed DOI PMC
Wharfe MD, Wyrwoll CS, Waddell BJ, Mark PJ. Pregnancy suppresses the daily rhythmicity of core body temperature and adipose metabolic gene expression in the mouse. Endocrinology. 2016;157(9):3320–31. doi: 10.1210/en.2016-1177 PubMed DOI
Yoshikawa T, Matsuno A, Yamanaka Y, Nishide S-Y, Honma S, Honma K-I. Daily exposure to cold phase-shifts the circadian clock of neonatal rats in vivo. Eur J Neurosci. 2013;37(3):491–7. doi: 10.1111/ejn.12052 PubMed DOI
Nováková M, Sládek M, Sumová A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms. 2010;25(5):350–60. doi: 10.1177/0748730410377967 PubMed DOI
Kim HS, Sohn H, Jang SW, Lee GR. The transcription factor NFIL3 controls regulatory T-cell function and stability. Exp Mol Med. 2019;51(7):1–15. doi: 10.1038/s12276-019-0280-9 PubMed DOI PMC
Zhao Z, Yin L, Wu F, Tong X. Hepatic metabolic regulation by nuclear factor E4BP4. J Mol Endocrinol. 2021;66(1):R15–21. doi: 10.1530/JME-20-0239 PubMed DOI PMC
Tong X, Muchnik M, Chen Z, Patel M, Wu N, Joshi S, et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem. 2010;285(47):36401–9. doi: 10.1074/jbc.M110.172866 PubMed DOI PMC
Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O, Fiehn O, et al. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants (Basel). 2023;12(5):986. doi: 10.3390/antiox12050986 PubMed DOI PMC
Paulose JK, Rucker EB 3rd, Cassone VM. Toward the beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS One. 2012;7(11):e49555. doi: 10.1371/journal.pone.0049555 PubMed DOI PMC
Pelikan A, Herzel H, Kramer A, Ananthasubramaniam B. Venn diagram analysis overestimates the extent of circadian rhythm reprogramming. FEBS J. 2022;289(21):6605–21. doi: 10.1111/febs.16095 PubMed DOI
Parsons R, Parsons R, Garner N, Oster H, Rawashdeh O. CircaCompare: a method to estimate and statistically support differences in mesor, amplitude and phase, between circadian rhythms. Bioinformatics. 2020;36(4):1208–12. doi: 10.1093/bioinformatics/btz730 PubMed DOI
Smith EB, Johnson BC. Studies of amino acid requirements of adult rats. Br J Nutr. 1967;21(1):17–27. doi: 10.1079/bjn19670005 PubMed DOI
Hou Y, Yin Y, Wu G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med (Maywood). 2015;240(8):997–1007. doi: 10.1177/1535370215587913 PubMed DOI PMC
Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49(2):141–7. doi: 10.1203/00006450-200102000-00003 PubMed DOI
Yao N, Kinouchi K, Katoh M, Ashtiani KC, Abdelkarim S, Morimoto H, et al. Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring. Cell Metab. 2025;37(2):395-412.e6. doi: 10.1016/j.cmet.2024.12.002 PubMed DOI PMC
Wang Z, Ma L, Meng Y, Fang J, Xu D, Lu Z. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol. 2024;34(9):742–55. doi: 10.1016/j.tcb.2023.11.004 PubMed DOI
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34. doi: 10.1016/j.cell.2008.11.044 PubMed DOI PMC
Bjork JM, Grant SJ, Chen G, Hommer DW. Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing. Neuropsychopharmacology. 2014;39(3):595–604. doi: 10.1038/npp.2013.232 PubMed DOI PMC
Jones LL, McDonald DA, Borum PR. Acylcarnitines: role in brain. Prog Lipid Res. 2010;49(1):61–75. doi: 10.1016/j.plipres.2009.08.004 PubMed DOI
Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol. 2004;287(2):C263-9. doi: 10.1152/ajpcell.00333.2003 PubMed DOI
Ding T, Song G, Liu X, Xu M, Li Y. Nucleotides as optimal candidates for essential nutrients in living organisms: a review. J Funct Foods. 2021;82:104498. doi: 10.1016/j.jff.2021.104498 DOI
Errasti-Murugarren E, Díaz P, Godoy V, Riquelme G, Pastor-Anglada M. Expression and distribution of nucleoside transporter proteins in the human syncytiotrophoblast. Mol Pharmacol. 2011;80(5):809–17. doi: 10.1124/mol.111.071837 PubMed DOI
Hurtado O, Moro MA, Cárdenas A, Sánchez V, Fernández-Tomé P, Leza JC, et al. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol Dis. 2005;18(2):336–45. doi: 10.1016/j.nbd.2004.10.006 PubMed DOI
Radad K, Gille G, Xiaojing J, Durany N, Rausch W-D. CDP-choline reduces dopaminergic cell loss induced by MPP PubMed DOI
Cansev M. Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev. 2006;52(2):389–97. doi: 10.1016/j.brainresrev.2006.05.001 PubMed DOI
Carlezon WA serrr, Mague SD, Parow AM, Stoll AL, Cohen BM, Renshaw PF. Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry. 2005;57(4):343–50. doi: 10.1016/j.biopsych.2004.11.038 PubMed DOI
Savci V, Wurtman RJ. Effect of cytidine on membrane phospholipid synthesis in rat striatal slices. J Neurochem. 1995;64(1):378–84. doi: 10.1046/j.1471-4159.1995.64010378.x PubMed DOI
Sládek M, Liška K, Houdek P, Sumová A. Modulation of single cell circadian response to NMDA by diacylglycerol lipase inhibition reveals a role of endocannabinoids in light entrainment of the suprachiasmatic nucleus. Neuropharmacology. 2021;185:108455. doi: 10.1016/j.neuropharm.2021.108455 PubMed DOI
Sládek M, Polidarová L, Nováková M, Parkanová D, Sumová A. Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One. 2012;7(10):e46951. doi: 10.1371/journal.pone.0046951 PubMed DOI PMC
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6. doi: 10.1038/nmeth.3393 PubMed DOI PMC
Arora S, Houdek P, Čajka T, Dočkal T, Sládek M, Sumová A. Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats. Acta Physiol (Oxf). 2025;241(2):e14278. doi: 10.1111/apha.14278 PubMed DOI PMC
Rudl Kulhava L, Houdek P, Novakova M, Hricko J, Paucova M, Kuda O, et al. Circadian ontogenetic metabolomics atlas: an interactive resource with insights from rat plasma, tissues, and feces. Cell Mol Life Sci. 2025;82(1):264. doi: 10.1007/s00018-025-05783-w PubMed DOI PMC
Teichman G, Cohen D, Ganon O, Dunsky N, Shani S, Gingold H, et al. RNAlysis: analyze your RNA sequencing data without writing a single line of code. BMC Biol. 2023;21(1):74. doi: 10.1186/s12915-023-01574-6 PubMed DOI PMC
Hutchison AL, Maienschein-Cline M, Chiang AH, Tabei SMA, Gudjonson H, Bahroos N, et al. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput Biol. 2015;11(3):e1004094. doi: 10.1371/journal.pcbi.1004094 PubMed DOI PMC
Kopczynski D, Hoffmann N, Peng B, Ahrends R. Goslin: a grammar of succinct lipid nomenclature. Anal Chem. 2020;92(16):10957–60. doi: 10.1021/acs.analchem.0c01690 PubMed DOI PMC